期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Microstructure-fracture toughness relationships and toughening mechanism of TC21 titanium alloy with lamellar microstructure 被引量:15
1
作者 Zhi-feng SHI Hong-zhen GUO +1 位作者 Jian-wei ZHANG Jian-ning YIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第12期2440-2448,共9页
The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with diffe... The independent influence of microstructural features on fracture toughness of TC21alloy with lamellar microstructure was investigated.Triple heat treatments were designed to obtain lamellar microstructures with different parameters,which were characterized by OM and SEM.The size and content ofαplates were mainly determined by cooling rate from singleβphase field and solution temperature in two-phase field;while the precipitation behavior of secondaryαplatelets was dominantly controlled by aging temperature in two-phase field.The content and thickness ofαplates and the thickness of secondaryαplatelets were important microstructural features influencing the fracture toughness.Both increasing the content ofαplates and thickeningαplates(or secondaryαplatelets)could enhance the fracture toughness of TC21alloy.Based on energy consumption by the plastic zone of crack tip inαplates,a toughening mechanism for titanium alloys was proposed. 展开更多
关键词 titanium alloy lamellar microstructure fracture toughness crack tip plastic zone toughening mechanism
下载PDF
Toughening mechanism of lined Al_2O_3-ZrO_2 multiphaseceramics in SHS composite pipes 被引量:11
2
作者 Guibo Yu Wen Yan Shuhai Wang Baoxin Su Baolai Tan 《Journal of University of Science and Technology Beijing》 CSCD 2006年第2期178-182,共5页
Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of ... Hypoeutectic and hypereutectic Al2O3-ZrO2 multiphase ceramics-lined composite pipes were produced by using the gravitational separation self-propagate high-temperature synthesis (SHS) process. The microstructure of the ceramics was observed by means of SEM and EPMA. The fracture toughness of the multiphase ceramics was tested by using the Vickers indentation method. The fracture toughness of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.96 MPa·m^1/2 and that of hypoeutectic Al2O3-ZrO2 multiphase ceramics is 15.23 MPa·m^1/2. The toughening mechanisms were systematically investigated by means of SEM and XRD. The results show that the bridging toughening mechanism, stress induced ZrO2 transformation toughening mechanism, and microcrack toughening mechanism are the predominant toughening mechanism. 展开更多
关键词 SHS multiphase ceramics eutectic structure toughening mechanism
下载PDF
AN INVESTIGATION OF HIGH-TEMPERATURE DEFORMATION STRENGTHENING AND TOUGHENING MECHANISM OF TITANIUM ALLOY
3
作者 Y.G.Zhou W.D.Zing H.Q.Yu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第5期376-382,共7页
The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which co... The high-temperature deformation strengthening and toughening mechanisms of titanium alloys have been investigated in this paper. The materials processed by this method produce a new tri-modal microstrvcture, which consists of 10-20% equiaxed alpha, streaky alpha and transformed beta matrix. It is found that the higher ductility of tri-modal microstructure is attributed to the equiaxed alpha's coopemtive slip and coordinated deformation with the transformed beta matrix. The streaky alpha phases not only increase the strength and creep properties, but also increase the fracture toughness. Propagating along grain boundaries between two neighboring streaky alpha phases, cracks in tri-modal microstructure make a more tortuous way, and then the materials show a higher fracture toughness. This new method is applicable to α, near α,α+β and near β titanium alloys. 展开更多
关键词 titanium alloy high-temperature deformation strengthening and toughening mechanism
下载PDF
Preparation and toughening mechanism of Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shell units 被引量:1
4
作者 Yingjie Shi Weixing Li +7 位作者 Xiaorong Zhang Jiachao Jin Jilin Wang Yu Dong Jingbo Mu Guangsuo Wang Xiaoliang Zhang Zhixiao Zhang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第12期2371-2381,共11页
In this paper, the concept of incorporating core–shell structured units as secondary phases totoughen Al_(2)O_(3) ceramics is proposed. Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shellunits are ... In this paper, the concept of incorporating core–shell structured units as secondary phases totoughen Al_(2)O_(3) ceramics is proposed. Al_(2)O_(3) composite ceramics toughened by B_(4)C@TiB_(2) core–shellunits are successfully synthesized using a combination of molten salt methodology and spark plasmasintering. The synthesis of B_(4)C@TiB_(2) core–shell toughening units stems from the prior production ofcore–shell structural B_(4)C@TiB_(2) powders, and this core–shell structure is effectively preserved withinthe Al_(2)O_(3) matrix after sintering. The B_(4)C@TiB_(2) core–shell toughening unit consists of a micron-sizedB4C core enclosed by a shell approximately 500 nm in thickness, composed of numerous nanosizedTiB2 grains. The regions surrounding these core–shell units exhibit distinct geometric structures andencompass multidimensional variations in phase composition, grain dimensions, and thermal expansioncoefficients. Consequently, intricate stress distributions emerge, fostering the propagation of cracks inmultiple dimensions. This behavior consumes a considerable amount of crack propagation energy,thereby enhancing the fracture toughness of the Al_(2)O_(3) matrix. The resulting Al_(2)O_(3) composite ceramicsdisplay relative density of 99.7%±0.2%, Vickers hardness of 21.5±0.8 GPa, and fracture toughness6.92±0.22 MPa·m1/2. 展开更多
关键词 Al_(2)O_(3)composite ceramics microstructure design core-shell structure toughening mechanism spark plasma sintering(SPS)
原文传递
Self-assembling nacre-like high-strength and extremely tough polymer composites with new toughening mechanism
5
作者 Yu Bu Xu Wang +6 位作者 Xiuming Bu Zhengyi Mao Zhou Chen Zebiao Li Fengqian Hao Johnny C.Ho Jian Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第5期236-244,共9页
Achieving high strength,deformability and toughness in polymers is important for practical industrial applications.This has remained challenging because of the mutually opposing effects of improvements to each of thes... Achieving high strength,deformability and toughness in polymers is important for practical industrial applications.This has remained challenging because of the mutually opposing effects of improvements to each of these properties.Here,a self-assembling nacre-like polymer composite is designed to achieve ex-tremely tough with increasing strength.This special design significantly improved polymer’s mechanical properties,including an ultra-high fracture strain of 1180%,a tensile strength of 55.4 MPa and a toughness of 506.9 MJ/m^(3),which far exceed the highest values previously reported for polymer composites.This ex-cellent combination of properties can be attributed to a novel toughening mechanism,achieved by the synergy of the domain-limiting effect of metallic glass fragments with the strain-gradient-induced orien-tation and crystallisation within the polymer during stretching.Our approach opens a promising avenue for designing robust polymer materials in armour and aerospace engineering for a range of innovative applications. 展开更多
关键词 Polymer composites Metallic glass thin film Toughness toughening mechanism Nacre-like fracture
原文传递
Reactive processing of poly(lactic acid)/poly(ethylene octene) blend film with tailored interfacial intermolecular entanglement and toughening mechanism 被引量:5
6
作者 Wenjun He Lin Ye +2 位作者 Phil Coates Fin Caton-Rose Xiaowen Zhao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期186-196,共11页
In order to obtain a uniform and effectively toughened poly(lactic acid)film by blending with low content of poly(ethylene octene)(POE)with high elasticity,the tailored interfacial intermolecular interaction and entan... In order to obtain a uniform and effectively toughened poly(lactic acid)film by blending with low content of poly(ethylene octene)(POE)with high elasticity,the tailored interfacial intermolecular interaction and entanglement between the two phases of the PLA/POE blend was innovatively constructed via the facile reactive melt blending process through the reaction of the epoxy/anhydride groups grafted on the POE chains with the end groups of PLA chains(PLA/GPOE-MPOE).It was observed that POE domains were embedded tightly in PLA matrix with a fuzzy interface and abundant interface transition area,and the impact fractured surface of the blend showed an obvious plastic deformation with less occurrence of fibrillation of PLA matrix or interfacial de-bonding.Compared with neat PLA and directly blended PLA/POE blends,the PLA/GPOE-MPOE blend exhibited much higher complex viscosity/storage modulus,much lower tanδvalues in the terminal region,and obvious strain-hardening behavior.The deviation in viscoelastic behavior of PLA/GPOE-MPOE from linear PLA indicated the enhanced molecular entanglement between the long-branched chains,resulting in an enhancement of the stretching ability during biaxial drawing of the blend.Uniform PLA/GPOE-MPOE films with draw ratio as high as 7×7 were obtained through biaxial stretching,which showed much higher tensile strength and the elongation at break than that of neat PLA and PLA/POE film.This work provides a facile method for fabricating toughening PLA films with application potentials. 展开更多
关键词 Poly(lactic acid)/poly(ethylene octene)(PLA/POE)blend film Reactive processing Tailored interfacial intermolecular interaction Long-chain branched structure toughening mechanism
原文传递
Toughening Mechanism of Nanocomposite Physical Hydrogels Fabricated by a Single Gel Network with Dual Crosslinking-- The Roles of the Dual Crosslinking Points 被引量:5
7
作者 fu-kuan shi ming zhong +2 位作者 li-qin zhang xiao-ying liu 谢续明 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第1期25-35,共11页
A facile method to fabricate tough and highly stretchable polyacrylamide (PAM) nanocomposite physical hydrogel (NCP gel) was proposed. The hydrogels are dually crosslinked single network with the PAM grafted vinyl... A facile method to fabricate tough and highly stretchable polyacrylamide (PAM) nanocomposite physical hydrogel (NCP gel) was proposed. The hydrogels are dually crosslinked single network with the PAM grafted vinyl hybrid silica nanoparticles (VSNPs) as the analogous covalent crosslinking points and the reversible hydrogen bonds among the PAM chains as the physical crosslinking points. In order to further elucidate the toughening mechanism of the PAM NCP gel, especially to understand the role of the dual crosslinking points, the PAM hybrid hydrogels (H gels) and a series of poly(acrylamide-co-dimethylacrylamide) (P(AM-co-DMAA)) NCP gels were designed and fabricated. Their mechanical properties were compared with those of the PAM NCP gels. The PAM H gels are prepared by simply mixing the PAM chains with bare silica nanoparticles (SNPs). Relative to the poor mechanical properties of the PAM H gel, the PAM NCP gel is remarkably tough and stretchable and also generates large number of micro-cracks to stop notch propagation, indicating the important role of PAM grafted VSNPs in toughening the NCP gel. In the P(AM-co-DMAA) NCP gels, the P(AM-co- DMAA) chains are grafted on VSNPs and the polydimethylacrylamide (PDMAA) only forms very weak hydrogen bonds between themselves. It is found that mechanical properties of the PAM NCP gel, such as the tensile strength and the elongation at break, are enhanced significantly, but those of the P(AM-co-DMAA) NCP gels decreased rapidly with decreasing AM content. This result reveals the role of the hydrogen bonds among the grafted polymer chains as the physical crosslinking points in toughening the NCP gel. 展开更多
关键词 Dual crosslinking single network Nanocomposite physical hydrogel toughening mechanism
原文传递
Microstructure, mechanical properties and toughening mechanism of directional Fe2B crystal in Fe-B alloy with trace Cr addition
8
作者 Yongxin Jian Zhifu Huang +2 位作者 Xiaoting Liu Jialin Sun Jiandong Xing 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第22期172-179,共8页
Exploring the effective way to improve Fe2 B's toughness has always been the hot topic in the researches of Fe-B wear resistant alloys.In the present work,the effects of Cr on the microstructure,mechanical propert... Exploring the effective way to improve Fe2 B's toughness has always been the hot topic in the researches of Fe-B wear resistant alloys.In the present work,the effects of Cr on the microstructure,mechanical properties and lattice structure of directional Fe2 B have been investigated.The affecting mechanism of Cr addition has been discussed according to the experimental and first-principle calculation analysis.The results show Cr addition can improve the toughness of directional Fe2 B on the longitudinal sections perpendicular to(002) crystal plane,without sacrificing the hardness distinctly.The toughening mechanism by Cr substitution has been revealed:Cr addition enriches the electron density between the B atoms along [002] direction,contributing to the shrinkage of the bond length and the enhancement of the bond strength of B-B bonds.The obtained results provide insight into the intrinsic reason for toughening Fe2 B by Cr doping. 展开更多
关键词 Directional Fe2B Cr addition Lattice evolution toughening mechanism
原文传递
Steel Fiber Toughening Mullite-SiC Castables for Coke Dry Quenching Furnace Corbel Pillar
9
作者 NI Kangxiang ZHANG Meijie +3 位作者 GU Huazhi HUANG Ao LI Hongming SHAO Zhijun 《China's Refractories》 CAS 2017年第1期24-30,共7页
The mullite-SiC castables for coke dry quenching(CDQ)furnace corbel pillar were prepared by taking mullite and silicon carbide as aggregates,silicon carbide powder,fused silica powder,α-Al2O3powder and silica fume ... The mullite-SiC castables for coke dry quenching(CDQ)furnace corbel pillar were prepared by taking mullite and silicon carbide as aggregates,silicon carbide powder,fused silica powder,α-Al2O3powder and silica fume as matrix,calcium aluminate cement as binding system,and extra-adding steel fibers to extend the CDQ furnace refractory life.The effects of steel fiber types(melt pumping meniscus,cut straight,wavy indentation,cold-drawn hook)and steel fiber extra-additions(0,1%,2%,3%by volume)on the properties of mullite-SiC castables were investigated.Then the toughening mechanism of steel fiber in the castables was analyzed according to the load-displacement curves.The results show that:(1)the toughening effects of the melt pumping meniscus steel fiber with rough surface and colddrawn hook steel fiber with strong anchoring effect with the matrix are better than those of cut straight steel fiber and wavy indentation steel fiber;(2)the suitable amount of steel fiber(less than 2%)in mullite-SiC castables not only significantly improves the mechanical properties,thermal shock resistance and wearing resistance,but also improves the fracture energy by 49.0%and slows the crack growth;(3)the bond strength and mechanical anchoring force between steel fiber and castable interface are key elements of steel fiber reinforced castables. 展开更多
关键词 coke dry quenching steel fiber mullite-silicon carbide castable toughening mechanism
下载PDF
Synergistically Toughening Effect of SiC Whiskers and Nanoparticles in Al_2O_3-based Composite Ceramic Cutting Tool Material 被引量:4
10
作者 LIU Xuefei LIU Hanlian +3 位作者 HUANG Chuanzhen WANG Limei ZOU Bin ZHAO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期977-982,共6页
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ... In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool. 展开更多
关键词 Al2O3-based ceramic cutting tool materials SiC whiskers SiC nanoparticles mechanical properties toughening and strengthening mechanisms
下载PDF
A Review of Experimental Research on the Mode I Fracture Behavior of Bamboo
11
作者 Yue Chen Haitao Li +3 位作者 Lei Gao Wei Xu Rodolfo Lorenzo Milan Gaff 《Journal of Renewable Materials》 SCIE EI 2023年第6期2787-2808,共22页
Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of moder... Bamboo is an eco-friendly material with light weight,high strength,short growth cycle and high sustainability,which is widely used in building structures.Engineered bamboo has further promoted the development of modern bamboo structures due to its unrestricted size and shape.However,as a fiber-reinforced material,fracture damage,especially Mode I fracture damage,becomes the most likely damage mode of its structure,so Mode I fracture characteristics are an important subject in the research of mechanical properties of bamboo.This paper summarizes the current status of experimental research on the Mode I fracture properties of bamboo based on the three-point bending(TPB)method,the single-edge notched beam(SENB)method,the compact tension(CT)method and the double cantilever beam(DCB)method,compares the fracture toughness of different species of bamboo,analyzes the toughening mechanisms and fracture damage modes,discusses the applicability of different theoretical calculation methods,and makes suggestions for future research priorities,aiming to provide a reference for future research and engineering applications in related fields. 展开更多
关键词 Mode I fracture properties test method toughening mechanism fracture damage modes
下载PDF
Microstructure and Mechanical Properties of CaCO_3 Whisker-reinforced Cement 被引量:11
12
作者 曹明莉 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期1004-1009,共6页
Composite Portland cement (PC) played an important role in various kinds of construction engineering owing to low hydration heat,low-cost,and application of solid industrial waste,but its brittleness and low strengt... Composite Portland cement (PC) played an important role in various kinds of construction engineering owing to low hydration heat,low-cost,and application of solid industrial waste,but its brittleness and low strength limited its use in stress-bearing locations.The aim of this study is to improve the toughness and fracture resistance by incorporating CaCO3 whisker in cement matrix.Effect of different content of calcium carbonate whiskers on the mechanical properties of PC was investigated.The results showed that the flexural strength,impact strength and split tensile strength were increased by 39.7%,39.25% and 36.34% at maximum,respectively.Microstructure and elements of the whiskers in hardened cement were observed and analyzed by SEM/EDS.The mechanisms of the reinforcement of CaCO3 whisker on cement were also discussed,and the conclusion was that the improvement could be correlated to energy-dissipating processes owing to crack bridging,crack deflection,and whisker pull-out at the crack tips. 展开更多
关键词 CaCO3 whiskers reinforcement composite Portland cement mechanical properties microstructure toughening mechanism
下载PDF
Mechanical Behaviors of ZrO_2-Al_2O_3 Ceramic Composites with Y_2O_3 as Stabilizer 被引量:3
13
作者 丘泰 王玉春 沈春英 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期280-284,共5页
The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into t... The ZrO2-Al2O3 ceramic composites were prepared by appropriate techniques with commercial ZrO2 and Al2O3 powders as raw materials and Y2O3 as stabilizer. The results indicate that with the introduction of Al2O3 into the ZrO2 matrix where the quantity of additive Y2O3 is 3.5% (mole fraction), the growth of ZrO2 grains is efficiently inhibited, which helps the ZrO2 grains exist in a metastable tetragonal manner; thus higher strength and toughness are acquired. When the content of alumina is 20% (mass fraction), the bending strength and fracture toughness of the composites are 676.7 MPa and 10 MPa·m1/2 respectively, the mechanical behaviors are close to those prepared with ZrO2 and Al2O3 powders synthesized through wet chemical approach. The mechanical behaviors of the composites are well improved owing to the dispersion toughening of alumina grains and phase transformation toughening of zirconia grains. 展开更多
关键词 inorganic non-metallic materials zirconia-alumina ceramic composites yttria stabilizer mechanical behaviors toughening mechanism rare earths
下载PDF
Crack deflection occurs by constrained microcracking in nacre 被引量:2
14
作者 Jingru Song Cuncai Fan +2 位作者 Hansong Ma Lihong Liang Yueguang Wei 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第1期143-150,共8页
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con... For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials. 展开更多
关键词 Biological mineralized material NACRE toughening mechanism Three-point bending test Crack deflection Microcracking
下载PDF
EPOXY RESIN TOUGHENED BY THERMOPLASTICS 被引量:2
15
作者 傅增力 孙以实 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1989年第4期367-378,共12页
Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the mo... Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system. 展开更多
关键词 POLYSULFONE thermoplastics Epoxy resin toughening mechanism Crack pinning
下载PDF
In-situ Fabricated TiB_2 Particle-whisker Synergistically Toughened Ti(C,N)-based Ceramic Cutting Tool Material 被引量:4
16
作者 LIU Hanlian SHI Qiang +3 位作者 HUANG Chuanzhen ZOU Bin XU Liang WANG Jun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期338-342,共5页
The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of h... The mechanical properties of ceramic cutting tool materials can be modified by introducing proper content of nanoparticles or whiskers.However,the process of adding whiskers or nanoparticles has the disadvantages of high cost and health hazard as well as the agglomeration;although a new in-situ two-step sintering process can solve the above problems to some extent,yet the problems of low conversion ratio of the raw materials and the abnormal grain growth exist in this process.In this paper,an in-situ one-step synthesis technology is proposed,which means the growth of whiskers or nanoparticles and the sintering of the compact can be accomplished by one time in furnace.A kind of Ti(C,N)-based ceramic cutting tool material synergistically toughened by TiB_2 particles and whiskers is fabricated with this new process.The phase compositions,relationships between microstructure and mechanical properties as well as the toughening mechanisms are analyzed by means of X-ray diffraction(XRD)and scanning electron microscopy(SEM).The composite which is sintered under a pressure of 32 MPa at a temperature of 1700℃in vacuum holding for 60 min can get the optimal mechanical properties.Its flexural strength,fracture toughness and Vickers hardness are 540 MPa,7.81 MPa·m(1/2)and 20.42 GPa,respectively.The composite has relatively high density,and the in-situ synthesized TiB_2 whiskers have good surface integrity,which is beneficial for the improvement of the fracture toughness.It is concluded that the main toughening mechanisms of the present composite are whiskers pulling-out and crack deflection induced by whiskers,crack bridging by whiskers/particles and multi-scale particles synergistically toughening.This study proposes an in-situ one-step synthesis technology which can be well used for fabricating particles and whiskers synergistically toughened ceramic tool materials. 展开更多
关键词 in-situ synthesis technology TiB_ whisker toughening mechanism Ti(C N)-TiB_ composite tool material
下载PDF
Room-Temperature Mechanical Properties of Rare Earths Reinforced MoSi_2 Material 被引量:1
17
作者 张厚安 刘心宇 《Journal of Rare Earths》 SCIE EI CAS CSCD 2001年第4期271-274,共4页
MoSi 2 and rare earths/MoSi 2 materials were prepared by mechanical alloying, IP and high temperature sintering techniques. Their room temperature properties such as bending strength, fracture toughness and elect... MoSi 2 and rare earths/MoSi 2 materials were prepared by mechanical alloying, IP and high temperature sintering techniques. Their room temperature properties such as bending strength, fracture toughness and electric conductivity were measured. The results show that rare earths have better strengthening and toughening effects on the MoSi 2 matrix than SiC does. The room temperature bending strength and fracture toughness of 0 9% rare earths/MoSi 2 material are 419 41 MPa and 5 81 MPa·m 1/2 , which have increased by 46% and 81% than the matrix, respectively. The strengthening mechanisms of rare earths/MoSi 2 are fine grain and dispersion strengthening. The toughening mechanisms are fine grain toughening, crack deflection and bowing toughening. Moreover, the effect of rare earths on the electric conductivity of MoSi 2 is much weaker than that of SiC whiskers. With the addition of 0 9% rare earths, the resistivity of MoSi 2 is only raised by about 13 9%. 展开更多
关键词 rare earths MoSi 2 room temperature properties strengthening and toughening mechanism
下载PDF
Curing Kinetics, Mechanical Properties and Thermal Stability of Epoxy/Graphene Nanoplatelets(GNPs) Powder Coatings 被引量:4
18
作者 智茂永 黄婉霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期1155-1161,共7页
Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored b... Epoxy/graphene nanoplatelets(GNPs) powder coatings were fabricated using ultrasonic predispersion of GNPs and melt-blend extrusion method. The isothermal curing kinetics of epoxy/GNPs powder coating were monitored by means of real-time Fourier transform infrared spectroscopy(FT-IR) with a heating cell. The mechanical properties of the epoxy/GNPs cured coatings had been investigated, by evaluating their fracture surfaces with field-emission scanning electron microscopy(FE-SEM) after three-point-bending tests. The thermal stability of the epoxy/GNPs cured coatings was studied by thermo-gravimetric analysis(TGA). The isothermal curing kinetics result showed that the GNPs would not affect the autocatalytic reaction mechanism, but the loading of GNPs below 1.0 wt % additive played a prompting role in the curing of the epoxy/GNPs powder coatings. The fracture strain, fracture toughness and impact resistance of the epoxy/GNPs cured coatings increased dramatically at low levels of GNPs loading(1 wt %), indicating that the GNPs could improve the toughness of the epoxy/GNPs powder coatings. Furthermore, from FE-SEM studies of the fracture surfaces, the possible toughening mechanisms of the epoxy/GNPs cured coatings were proposed. TGA result showed that the incorporation of GNPs improved the thermal stability of the cured coatings. Hence, the GNPs modified epoxy can be an efficient approach to toughen epoxy powder coating along with improving their thermal stability. 展开更多
关键词 epoxy powder coating graphene nanoplatelets(GNPs) toughening mechanism thermal stability
下载PDF
Variations of Microstructure and Mechanical Properties of Si-B-O-N Ceramics with Sintering Temperatures 被引量:1
19
作者 Junbao ZHANG, Guangwu WEN, Tingquan LEI, Dechang JIA and Jiancun RAOSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第4期343-346,共4页
Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been... Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different tempera-tures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated. Crystallization of Si-B-O-N ceramics occurred at about 1400癈. Density, elastic modulus, and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600癈. By contrast, hardness and frac-ture toughness of the ceramics monotonically changed with increasing sintering temperatures. Hardness decreased, while the fracture toughness increased. The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed 展开更多
关键词 Si-B-O-N ceramics Microstructure. Mechanical properties toughening mechanisms
下载PDF
Microstructural characterization and mechanical properties of self-reinforced Si_3N_4 ceramics containing high oxynitride glass 被引量:1
20
作者 XuetaoLuo LifuChen +1 位作者 QianjunHuang LitongZhang 《Journal of University of Science and Technology Beijing》 CSCD 2004年第4期329-333,共5页
Self-reinforced Si_3N_4 ceramics containing high oxynitride glass have beenfabricated by the control of microstructure evolution and p-Si_3N_4 grain growth. The effects of thesize distribution of the elongated p-Si_3N... Self-reinforced Si_3N_4 ceramics containing high oxynitride glass have beenfabricated by the control of microstructure evolution and p-Si_3N_4 grain growth. The effects of thesize distribution of the elongated p-Si_3N_44 grains, and the p-Si_3N_4 grain growth as well as theoxynitride glass chemical characteristic on the microstructure and mechanical properties wereinvestigated. The experimental results show that the p-Si_3N_4 grains in high oxynitride glass growto elongated rod-like crystals and form the stereo-network structure. Under the sintering conditionsof 1800 deg C and 60 min, a quite uniform microstructure with an average aspect ratio of 6.5 and anaverage of 1 mu m can be obtained. A large amount of oxynitride glass phase with high nitrogencontent enhances the elevated temperature fracture toughness because of its high softeningtemperature and high viscosity. In the present material, the crack deflection and pullout of theelongated rod-like P-Si_3N_44 grains are the primary toughening mechanisms. 展开更多
关键词 Si_3N_4 MICROSTRUCTURE grain growth high temperature mechanicalproperties toughening mechanisms
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部