期刊文献+
共找到947篇文章
< 1 2 48 >
每页显示 20 50 100
Constructing high-toughness polyimide binder with robust polarity and ion-conductive mechanisms ensuring long-term operational stability of silicon-based anodes
1
作者 Yongjun Kang Nanxi Dong +5 位作者 Fangzhou Liu Daolei Lin Bingxue Liu Guofeng Tian Shengli Qi Dezhen Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期580-591,I0014,共13页
Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utiliz... Silicon-based materials have demonstrated remarkable potential in high-energy-density batteries owing to their high theoretical capacity.However,the significant volume expansion of silicon seriously hinders its utilization as a lithium-ion anode.Herein,a functionalized high-toughness polyimide(PDMI) is synthesized by copolymerizing the 4,4'-Oxydiphthalic anhydride(ODPA) with 4,4'-oxydianiline(ODA),2,3-diaminobenzoic acid(DABA),and 1,3-bis(3-aminopropyl)-tetramethyl disiloxane(DMS).The combination of rigid benzene rings and flexible oxygen groups(-O-) in the PDMI molecular chain via a rigidness/softness coupling mechanism contributes to high toughness.The plentiful polar carboxyl(-COOH) groups establish robust bonding strength.Rapid ionic transport is achieved by incorporating the flexible siloxane segment(Si-O-Si),which imparts high molecular chain motility and augments free volume holes to facilitate lithium-ion transport(9.8 × 10^(-10) cm^(2) s^(-1) vs.16 × 10^(-10) cm^(2) s~(-1)).As expected,the SiO_x@PDMI-1.5 electrode delivers brilliant long-term cycle performance with a remarkable capacity retention of 85% over 500 cycles at 1.3 A g^(-1).The well-designed functionalized polyimide also significantly enhances the electrochemical properties of Si nanoparticles electrode.Meanwhile,the assembled SiO_x@PDMI-1.5/NCM811 full cell delivers a high retention of 80% after 100 cycles.The perspective of the binder design strategy based on polyimide modification delivers a novel path toward high-capacity electrodes for high-energy-density batteries. 展开更多
关键词 Polyimide binder High toughness Robust ionic transport Silicon-based anodes Lithium-ion batteries
下载PDF
Toughening ultrastrong low-density steel by textured δ-ferrite lamellas
2
作者 Bin Hu Guosen Zhu +4 位作者 Guohui Shen Zheng Wang Qinghua Wen Xiao Shen Haiwen Luo 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期405-411,共7页
By both the Charpy V-notched impact and the projectile tests, we here investigated the dynamic fracture behavior of a recently developed ultrastrong lightweight steel comprising a hierarchical martensitic matrix, disp... By both the Charpy V-notched impact and the projectile tests, we here investigated the dynamic fracture behavior of a recently developed ultrastrong lightweight steel comprising a hierarchical martensitic matrix, dispersed ultra-fine-retained austenite grains and oriented δ-ferrite lamellas, the latter being due to high Al and Si contents employed for low-density design. This steel shows a superior combination of specific ultimate tensile strength and impact toughness to other ultrastrong steels and has successfully arrested a real steel-cored bullet shot. These are attributed to the densely textured δ-ferrite lamellas that can deflect the propagating cracks until they are trapped and enclosed besides austenite-to-martensite transformation crack closure, leading to more energy consumed before failure. These results suggest a new pathway for toughening ultrastrong lightweight steels. 展开更多
关键词 Ultrastrong and light steel d-Ferrite lamellas Crack propagation TOUGHNESS
下载PDF
Effects of thawing-induced softening on fracture behaviors of frozen rock
3
作者 Ting Wang Hailiang Jia +2 位作者 Qiang Sun Xianjun Tan Liyun Tang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期979-989,共11页
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ... Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks. 展开更多
关键词 Frozen sandstone Different thawing temperature Fracture toughness Microcrack propagation process Unfrozen water content
下载PDF
The Boundary Element Method for Ordinary State-Based Peridynamics
4
作者 Xue Liang Linjuan Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2807-2834,共28页
The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic... The peridynamics(PD),as a promising nonlocal continuum mechanics theory,shines in solving discontinuous problems.Up to now,various numerical methods,such as the peridynamic mesh-free particlemethod(PD-MPM),peridynamic finite element method(PD-FEM),and peridynamic boundary element method(PD-BEM),have been proposed.PD-BEM,in particular,outperforms other methods by eliminating spurious boundary softening,efficiently handling infinite problems,and ensuring high computational accuracy.However,the existing PD-BEM is constructed exclusively for bond-based peridynamics(BBPD)with fixed Poisson’s ratio,limiting its applicability to crack propagation problems and scenarios involving infinite or semi-infinite problems.In this paper,we address these limitations by introducing the boundary element method(BEM)for ordinary state-based peridynamics(OSPD-BEM).Additionally,we present a crack propagationmodel embeddedwithin the framework ofOSPD-BEM to simulate crack propagations.To validate the effectiveness of OSPD-BEM,we conduct four numerical examples:deformation under uniaxial loading,crack initiation in a double-notched specimen,wedge-splitting test,and threepoint bending test.The results demonstrate the accuracy and efficiency of OSPD-BEM,highlighting its capability to successfully eliminate spurious boundary softening phenomena under varying Poisson’s ratios.Moreover,OSPDBEMsignificantly reduces computational time and exhibits greater consistencywith experimental results compared to PD-MPM. 展开更多
关键词 Ordinary state-based peridynamics boundary element method crack propagation fracture toughness
下载PDF
Instrumented oscillographic study on impact toughness of an axle steel DZ2 with different tempering temperatures
5
作者 Shuo Liu Peng Zhang +6 位作者 Bin Wang Kaizhong Wang Zikuan Xu Fangzhong Hu Xin Bai Qiqiang Duan Zhefeng Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1590-1598,共9页
Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the... Compared with the conventional Charpy impact test method,the oscillographic impact test can help in the behavioral analysis of materials during the fracture process.In this study,the trade-off relationship between the strength and toughness of a DZ2 axle steel at various tempering temperatures and the cause of the improvement in impact toughness was evaluated.The tempering process dramatically influenced carbide precipitation behavior,which resulted in different aspect ratios of carbides.Impact toughness improved along with the rise in tempering temperature mainly due to the increase in energy required in impact crack propagation.The characteristics of the impact crack propagation process were studied through a comprehensive analysis of stress distribution,oscilloscopic impact statistics,fracture morphology,and carbide morphology.The poor impact toughness of low-tempering-temperature specimens was attributed to the increased number of stress concentration points caused by carbide morphology in the small plastic zone during the propagation process,which resulted in a mixed distribution of brittle and ductile fractures on the fracture surface. 展开更多
关键词 axle steel DZ2 tempering process impact toughness oscillographic impact test impact crack propagation carbides
下载PDF
大自然的调色盘
6
作者 孙启禄 《疯狂英语(新读写)》 2024年第5期30-33,76,共5页
主题语境:人与自然篇幅:379词关键词:structural color1 Scientists at the University of Central Florida(UCF)have created a new kind of paint thats super light and super tough.The colors in the new paint arent at all like ... 主题语境:人与自然篇幅:379词关键词:structural color1 Scientists at the University of Central Florida(UCF)have created a new kind of paint thats super light and super tough.The colors in the new paint arent at all like those in most paints.Instead,theyre more like the colors on a butterflys wings. 展开更多
关键词 TOUGH PAINT COLORS
下载PDF
ITMF gains momentum in 2023
7
《China Textile》 2024年第1期30-30,共1页
In 2023,unfavorable macro-economic conditions such as high inflation and interest rates currently combine with unfavorable industry specific aspects such as high inventories at brand and retail level,creating pressure... In 2023,unfavorable macro-economic conditions such as high inflation and interest rates currently combine with unfavorable industry specific aspects such as high inventories at brand and retail level,creating pressure on textile manufacturers from both supply and demand sides.When the textile industry is going through a tough phase,ITMF helps the industry to change its growth pattern with an innovative and responsible attitude,actively promotes international trade and investment,plays its full role in promoting the economic growth of the industry and strives to build an open global textile economy.At the same time,ITMF advocates diversity and inclusion,implements the United Nations"The 2030 Agenda for Sustainable Development"and promotes the realisation of the industry’s development outcomes. 展开更多
关键词 SUSTAINABLE MOMENTUM TOUGH
下载PDF
坚持不懈的旅程
8
作者 于晓梅 《疯狂英语(新悦读)》 2024年第3期40-40,75,共2页
如何在逆境中坚持不懈,将失败转化为通往成功的阶梯?让我们一起到文章中寻找答案!Life is like a big picture, and every part of it stands for a choice, a hard time,or a win. Making your own way isn't just about getting w... 如何在逆境中坚持不懈,将失败转化为通往成功的阶梯?让我们一起到文章中寻找答案!Life is like a big picture, and every part of it stands for a choice, a hard time,or a win. Making your own way isn't just about getting where you want to go;it's about keeping on trying, even when things get tough. 展开更多
关键词 TOUGH GETTING STANDS
下载PDF
Ministry of Commerce:Full of confidence,clear direction,strong motivation
9
《China Textile》 2024年第2期16-17,共2页
On March 12,the official account of the International Business Daily of the Ministry of Commerce published an article titled“Foreign trade enterprises:full of confidence,clear direction,strong motivation”.The conten... On March 12,the official account of the International Business Daily of the Ministry of Commerce published an article titled“Foreign trade enterprises:full of confidence,clear direction,strong motivation”.The content is as follows:This year,China is still facing a tough foreign trade situation.On the one hand,many international organizations predict that global economic growth in 2024 will still be lower than the historical average and the pressure on external demand will increase;on the other hand,trade protectionism and unilateralism are on the rise,geopolitical conflicts,the global“super election year”and other spillover factors have created many uncertainties. 展开更多
关键词 MOTIVATION TOUGH CONFIDENCE
下载PDF
Product Development of High Strength and Toughness Spring Flat Steel
10
作者 Jianxin Wang Chunhui Zhang 《Frontiers of Metallurgical Industry》 2024年第1期15-18,共4页
With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are desi... With the continuous development of mechanical industry,higher requirements are put forward for the comprehensive properties of spring steel.The chemical composition and production process of spring flat steel are designed to meet the requirements of high strength and high toughness of spring flat steel,through the test,the product surface quality and internal quality all meet the national standards,the performance indicators to meet user requirements. 展开更多
关键词 spring flat steel mechanical properties high strength high toughness
下载PDF
储层和开采参数对天然气水合物开采产能的影响分析
11
作者 加瑞 许敬明 +2 位作者 郝岱恒 李青茁 杨岗 《海洋地质与第四纪地质》 CSCD 北大核心 2023年第6期202-216,共15页
开展储层参数和开采参数对天然气水合物开采产能影响的研究有助于其实际开采场址和开采方法的选择。以中国南海神狐海域SH7站位的地质参数为背景,采用TOUGH+HYDRATE软件系统地分析了储层压力、温度、孔隙度、水合物饱和度、渗透率、上... 开展储层参数和开采参数对天然气水合物开采产能影响的研究有助于其实际开采场址和开采方法的选择。以中国南海神狐海域SH7站位的地质参数为背景,采用TOUGH+HYDRATE软件系统地分析了储层压力、温度、孔隙度、水合物饱和度、渗透率、上覆层和下伏层渗透率等储层参数,以及降压幅度、降压井长度和出砂堵塞(通过改变井周网格渗透率反映出砂堵塞)等开采参数对天然气水合物降压开采产能的影响。数值模拟结果表明:①随着储层渗透率的增大,产气量有明显的增加;随着储层压力、孔隙度的增大以及上覆层和下伏层渗透率的减小,产气量有较大的增加;随着储层温度的增大,产气量有一定的增加;产气量随饱和度的增大先增大后减小。因此,实际开采时可优先选择渗透率大、上覆层和下伏层渗透率小、孔隙度大、温度较高、水合物饱和度适中的储层。②随着降压幅度的增大以及降压井长度增大,产气量有明显的增加;而随着出砂堵塞程度的加剧,产气量有非常明显的减少。因此,实际开采时可以通过增大降压幅度和降压井长度以及采取减轻出砂堵塞的措施来提高产气量。研究结果可以为我国将来天然气水合物开采区域及开采方式的选择和确定提供参考。 展开更多
关键词 天然气水合物 降压开采 TOUGH+HYDRATE 储层参数 开采参数
下载PDF
降压幅度和出砂堵塞对天然气水合物开采产能的影响分析
12
作者 加瑞 许敬明 +1 位作者 李青茁 杨岗 《科学技术与工程》 北大核心 2023年第15期6434-6447,共14页
为研究降压幅度和出砂堵塞对天然气水合物开采产能的影响,使用天然气水合物多相流数值模拟软件TOUGH+HYDRATE进行水合物降压开采模拟,通过不同情况下的水合物分解速率、产气速率、产气量和产水量分析了降压幅度和出砂堵塞对天然气水合... 为研究降压幅度和出砂堵塞对天然气水合物开采产能的影响,使用天然气水合物多相流数值模拟软件TOUGH+HYDRATE进行水合物降压开采模拟,通过不同情况下的水合物分解速率、产气速率、产气量和产水量分析了降压幅度和出砂堵塞对天然气水合物开采产能的影响,并通过不同情况下的储层压力、储层温度和水合物饱和度分布分析了其影响机理。数值模拟结果表明:(1)随着降压幅度的增大,储层中压力降低范围逐渐增大,而且压力降低幅值逐渐增大,储层与开采井之间的压力梯度越大,导致相同时间时的水合物分解速率、产气速率、产气量和产水量都逐渐增大;降压幅度的增大对短期开采的累积产气量有明显提高,而对长期开采的产气量影响不大,而降压幅度的增大可能导致出砂堵塞以及水合物二次生成,因此实际开采时应设定一个合理的降压幅度并辅助升温等其他措施。(2)随着出砂堵塞的加剧,井周附近的渗透率逐渐降低,储层中压力降低范围逐渐减小,而且压力降低幅值逐渐减小,储层与开采井之间的压力梯度越小,另外井周渗透率的降低还会导致气体的流速的降低,从而导致相同时间时的水合物分解速率、产气速率、产气量和产水量逐渐减小;出砂堵塞会对产气量持续产生影响,导致产气量随时间成比例减少,因此实际开采时应进行储层改良减轻出砂问题或采取防砂措施避免出砂堵塞。 展开更多
关键词 天然气水合物 降压幅度 出砂堵塞 TOUGH+HYDRATE
下载PDF
Size effect of fracture characteristics for anisotropic quasi-brittle geomaterials 被引量:4
13
作者 Cunbao Li Dongchao Yang +2 位作者 Heping Xie Li Ren Jun Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第2期201-213,共13页
Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture t... Understanding the size effect exhibited by the fracture mechanism of anisotropic geomaterials is important for engineering practice. In this study, the anisotropic features of the nominal strength, apparent fracture toughness, effective fracture energy and fracture process zone(FPZ) size of geomaterials were first analyzed by systematic size effect fracture experiments. The results showed that the nominal strength and the apparent fracture toughness decreased with increasing bedding plane inclination angle.The larger the specimen size was, the smaller the nominal strength and the larger the apparent fracture toughness was. When the bedding inclination angle increased from 0° to 90°, the effective fracture energy and the effective FPZ size both first decreased and then increased within two complex variation stages that were bounded by the 45° bedding angle. Regardless of the inherent anisotropy of geomaterials,the nominal strength and apparent fracture toughness can be predicted by the energy-based size effect law, which demonstrates that geomaterials have obvious quasi-brittle characteristics. Theoretical analysis indicated that the true fracture toughness and energy dissipation can be calculated by linear elastic fracture mechanics only when the brittleness number is higher than 10;otherwise, size effect tests should be adopted to determine the fracture parameters. 展开更多
关键词 Size effect Inherent anisotropy Fracture toughness Fracture energy Effective FPZ size Quasi-brittle geomaterials
下载PDF
Effects of microstructure characteristics on the tensile properties and fracture toughness of TA15 alloy fabricated by hot isostatic pressing 被引量:1
14
作者 Langping Zhu Yu Pan +6 位作者 Yanjun Liu Zhiyu Sun Xiangning Wang Hai Nan Muhammad-Arif Mughal Dong Lu Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期697-706,共10页
Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. Howev... Powder hot isostatic pressing(HIP) is an effective method to achieve near-net-shape manufacturing of high-quality complex thinwalled titanium alloy parts, and it has received extensive attention in recent years. However, there are few reports about the microstructure characteristics on the strengthening and toughening mechanisms of powder hot isostatic pressed(HIPed) titanium alloys. Therefore, TA15powder was prepared into alloy by HIP approach, which was used to explore the microstructure characteristics at different HIP temperatures and the corresponding tensile properties and fracture toughness. Results show that the fabricated alloy has a “basket-like structure” when the HIP temperature is below 950℃, consisting of lath clusters and surrounding small equiaxed grains belts. When the HIP temperature is higher than 950℃, the microstructure gradually transforms into the Widmanstatten structure, accompanied by a significant increase in grain size. The tensile strength and elongation are reduced from 948 MPa and 17.3% for the 910℃ specimen to 861 MPa and 10% for the 970℃ specimen.The corresponding tensile fracture mode changes from transcrystalline plastic fracture to mixed fracture including intercrystalline cleavage.The fracture toughness of the specimens increases from 82.64 MPa·m^(1/2)for the 910℃ specimen to 140.18 MPa·m^(1/2)for the 970℃ specimen.Specimens below 950℃ tend to form holes due to the prior particle boundaries(PPBs), which is not conducive to toughening. Specimens above 950℃ have high fracture toughness due to the crack deflection, crack branching, and shear plastic deformation of the Widmanstatten structure. This study provides a valid reference for the development of powder HIPed titanium alloy. 展开更多
关键词 POWDER titanium alloy hot isostatic pressing STRENGTH fracture toughness
下载PDF
Size effects on the tensile strength and fracture toughness of granitic rock in different tests 被引量:1
15
作者 Ignacio Pérez-Rey Andrea Muñoz-Ibáñez +5 位作者 Manuel A.González-Fernández Mauro Muñiz-Menéndez Miguel Herbón Penabad Xian Estévez-Ventosa Jordi Delgado Leandro RAlejano 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2179-2192,共14页
This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of differe... This study investigates the tensile failure mechanisms in granitic rock samples at different scales by means of different types of tests.To do that,we have selected a granitic rock type and obtained samples of different sizes with the diameter ranging from 30 mm to 84 mm.The samples have been subjected to direct tensile strength(DTS)tests,indirect Brazilian tensile strength(BTS)tests and to two fracture toughness testing approaches.Whereas DTS and fracture toughness were found to consistently grow with sample size,this trend was not clearly identified for BTS,where after an initial grow,a plateau of results was observed.This is a rather complete database of tensile related properties of a single rock type.Even if similar databases are rare,the obtained trends are generally consistent with previous scatter and partial experimental programs.However,different observations apply to different types of rocks and experimental approaches.The differences in variability and mean values of the measured parameters at different scales are critically analysed based on the heterogeneity,granular structure and fracture mechanics approaches.Some potential relations between parameters are revised and an indication is given on potential sample sizes for obtaining reliable results.Extending this database with different types of rocks is thought to be convenient to advance towards a better understanding of the tensile strength of rock materials. 展开更多
关键词 Size effect Tensile strength Fracture toughness GRANITE Finite fracture mechanics
下载PDF
Thermally insulating and fire-retardant bio-mimic structural composites with a negative Poisson's ratio for battery protection 被引量:1
16
作者 Fengyin Du Zuquan Jin +9 位作者 Ruizhe Yang Menglong Hao Jiawei Wang Gang Xu Wenqiang Zuo Zifan Geng Hao Pan Tian Li Wei Zhang Wei She 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期83-96,共14页
Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often a... Battery safety has attracted considerable attention worldwide due to the rapid development of wearable electronics and the steady increase in the production and use of electric vehicles.As battery failures are often associated with mechanical-thermal coupled behaviors,protective shielding materials with excellent mechanical robustness and flame-retardant properties are highly desired to mitigate thermal runaway.However,most of the thermal insulating materials are not strong enough to protect batteries from mechanical abuse,which is one of the most critical scenarios with catastrophic consequences.Here,inspired by wood,we have developed an effective approach to engineer a hierarchical nanocomposite via self-assembly of calcium silicate hydrate and polyvinyl alcohol polymer chains(referred as CSH wood).The versatile protective material CSH wood demonstrates an unprecedented combination of light weight(0.018 g cm-3),high stiffness(204 MPa in the axial direction),negative Poisson's ratio(-0.15),remarkable toughness(6.67×105 J m-3),superior thermal insulation(0.0204 W m-1 K-1 in the radial direction),and excellent fire retardancy(UL94-V0).When applied as a protective cover or a protective layer within battery packages,the tough CSH wood can resist high-impact load and block heat diffusion to block or delay the spread of fire,therefore significantly reducing the risk of property damage or bodily injuries caused by battery explosions.This work provides new pathways for fabricating advanced thermal insulating materials with large scalability and demonstrates great potential for the protection of electronic devices. 展开更多
关键词 battery protection negative Poisson's ratio thermal insulation TOUGHNESS wood-inspired materials
下载PDF
南海水合物地层的孔隙水合物形成机制模拟研究
17
作者 郑明明 周珂锐 +3 位作者 吴祖锐 刘天乐 颜诗纯 曾国澳 《煤田地质与勘探》 EI CAS CSCD 北大核心 2023年第5期54-65,共12页
地层骨架孔隙中水合物的高质量形成是开展水合物实验研究的前提和物质基础,可为我国深水油气及水合物资源开发提供理论指导。依据南海GMGS2-07井水合物层地质条件,利用TOUGH+HYDRATE数值模拟软件和自主研制的水合物反应生成装置开展数... 地层骨架孔隙中水合物的高质量形成是开展水合物实验研究的前提和物质基础,可为我国深水油气及水合物资源开发提供理论指导。依据南海GMGS2-07井水合物层地质条件,利用TOUGH+HYDRATE数值模拟软件和自主研制的水合物反应生成装置开展数值模拟和实验研究,在验证数值模拟方法准确性和可靠性的基础上,通过控制变量法分别开展不同地层导热系数和含水饱和度条件下水合物生成质量的影响研究。结果表明:(1)数值模拟与室内实验过程中,水合物形成时温度、压力与三相物质变化趋势一致且特征值十分接近,验证了数值模拟方法的准确性和可靠性。(2)导热系数越大,水合物生成越快,最终形成的水合物饱和度越大,分布也更加均匀。但导热系数与最终形成水合物的饱和度的正负相关性,存在临界边界。本次所选用的反应釜尺寸,临界边界距上、右边界距离为1.8 cm,临界边界内导热系数与水合物饱和度呈正相关性,临界边界外呈负相关性。临界边界随着反应釜尺寸的增大而增大,但临界边界位置不受地层渗透率的影响。(3)随地层含水饱和度增加,最终形成的水合物饱和度先增大后减小,峰值处含水饱和度小于初始压力条件下的理论气水比。当初始压力为7.8 MPa,含水饱和度约22.23%时,所形成的水合物饱和度最大且分布最不均匀。由此可知,选用高导热系数材料制备地层骨架、使初始含水饱和度低于气水理论比以及调整初始温压条件使之偏向相平衡曲线左方有利于形成分布均匀的高饱和水合物。研究认为深水油气含水合物固井和水合物资源钻采提供依据,为水合物商业化开采提供技术储备。 展开更多
关键词 南海 天然气水合物 室内实验 导热系数 含水饱和度 TOUGH+HYDRATE
下载PDF
A Cementing Technology for Shale Oil Horizontal Wells 被引量:1
18
作者 Yudong Tian Gonghui Liu +6 位作者 Yue Qi Jun Li Yan Xi Wei Lian Xiaojie Bai Penglin Liu Xiaoguang Geng 《Fluid Dynamics & Materials Processing》 EI 2023年第11期2837-2845,共9页
Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizont... Organic rich dark shale of Q Formation can be found in many areas(e.g.,in the North of S Basin).The shale target stratum is easy to hydrate and often undergoes spallation.Therefore,centering the casing in the horizontal section of the irregular borehole is relatively difficult.Similarly,achieving a good cementflushing efficiency under complex borehole conditions is a complex task.Through technologies such as centralizer,efficient preflushing,multi-stageflushing and ductile cement slurry,better performances can be achieved.In this study,it is shown that the cementing rate in the DY2H horizontal section is 97.8%,which is more than 34%higher than that of adjacent wells.This cementing matching technology for sidetracking horizontal wells can be used to improve the cementing quality of continental shale and provides a reference for future applications in thisfield. 展开更多
关键词 Shale oil sidetracking horizontal well tough cement slurry cementing technology
下载PDF
Toughness improvement mechanism and evaluation of cement concrete for road pavement:A review 被引量:2
19
作者 Mingjing Fang Yiming Chen +2 位作者 Yungang Deng Zhe Wang Mengjun Zhu 《Journal of Road Engineering》 2023年第2期125-140,共16页
Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of c... Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research. 展开更多
关键词 Cement concrete Road pavement TOUGHNESS Toughness evaluation method
下载PDF
增强型地热系统热-水动力-力学(THM)耦合模拟——以河北马头营凸起区为例 被引量:1
20
作者 冯波 曹云龙 +2 位作者 齐晓飞 崔振鹏 张兰新 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2023年第6期1892-1906,共15页
增强型地热系统(EGS)的裂隙热储层在长期开采过程中,由于不断地提取高温干热岩体的热量,致使高温花岗岩岩体温度下降,进而诱发岩体产生二次破裂,甚至出现流体短路,降低地热系统开采效率。为了保证EGS热能的稳定提取,需要建立试验场地的... 增强型地热系统(EGS)的裂隙热储层在长期开采过程中,由于不断地提取高温干热岩体的热量,致使高温花岗岩岩体温度下降,进而诱发岩体产生二次破裂,甚至出现流体短路,降低地热系统开采效率。为了保证EGS热能的稳定提取,需要建立试验场地的热-水动力-力学(THM)耦合模型,分析水动力和热效应对该储层裂隙发育规律的影响。本文基于河北马头营凸起区EGS开发场地的循环注水试验数据,建立场地热-水动力-力学耦合模型,通过模型模拟结果与现场观测结果进行比较,先验证了THM耦合模型的准确性,然后利用校正后的模型预测了不同注入方案下,EGS储层渗透率的提高和增产带的空间范围,揭示了储层裂隙增产带的范围受温度、压力、注入速率的影响情况。结果表明:经过63 d的增产处理,该模型预测的增产层体积约为10万m^(3);提高注水压力能刺激现有的裂隙发生剪切性破裂,拓宽增产带的区域;减小注水的温度有助于提升流体的穿透能力,扩大储层的增产带;在水力压裂的开始阶段,适当利用冷水注入有利于提高储层渗透率,且提高注入速率会使储层增产带的范围扩大。 展开更多
关键词 增强型地热系统 水力压裂 马头营凸起区 热-水动力-力学(THM)耦合模型 TOUGH2Biot
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部