A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller ...A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another advantage of the scheme is that only one cavity is required.展开更多
When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fie...When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.展开更多
A proposal is presented for teleporting Schr*iding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field ...A proposal is presented for teleporting Schr*iding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.展开更多
This paper proposes a scheme for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of a two-mode cavity field with a ∧-type three-level atom. In contrast with the previous...This paper proposes a scheme for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of a two-mode cavity field with a ∧-type three-level atom. In contrast with the previously proposed schemes, the present scheme is ascendant, since the fidelity is 1.0 and the joint measurement isn't needed. And the scheme is experimentally feasible based on the current cavity QED technique.展开更多
Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground st...We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.展开更多
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and...In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.展开更多
The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coheren...The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coherent state and squeezed vacuum state are calculated, respectively. It is found that the Kerr-like medium affects the spectral structure even though the initial field is in vacuum when the atom is in upper level. In the case of strong input field, the number state spectrum shows two peaks with different heights; and the superposition state spectrum shows a multipeak structure with an equal distance of two neighboring peaks. The spectral "central frequency" shifts away from the resonant frequency with the increasing of average photon number.展开更多
We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam e...We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.展开更多
Employing Rayleigh's method, the collapse of a vaporous bubble in an incompressible liquid with surface tension is analysed. The expressions of time versus radius, bubble-wall velocity and pressure developed at co...Employing Rayleigh's method, the collapse of a vaporous bubble in an incompressible liquid with surface tension is analysed. The expressions of time versus radius, bubble-wall velocity and pressure developed at collapse are thus introduced.Finally, the numerical solution of velocity and pressure field in the liquid surrounding the cavity is also given.展开更多
The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conv...The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.展开更多
A resonant cavity-enhanced (RCE) quantum dot (QD) field-effect transistor (RCEQDFET) is designed for single- photon detection in this paper. Adding distributed Bragg reflection (DBR) mirrors to the single-phot...A resonant cavity-enhanced (RCE) quantum dot (QD) field-effect transistor (RCEQDFET) is designed for single- photon detection in this paper. Adding distributed Bragg reflection (DBR) mirrors to the single-photon detector (SPD), we improve the light absorption efficiency of the SPD. The effects of the reflectivity of the mirrors, the thickness and light absorption coefficient of the absorbing layer on the detector's light absorption efficiency are investigated, and the resonant cavity is determined by using the air/semiconductor interface as the mirror on the top. Through analyzing the relationship between the refractive index of AlxGal_xAs and A1 component, we choose A1As/Alo.15Gao.85As as the material of the mirror on the bottom. The pairs of A1As/Alo.15Gao.85As film are further determined to be 21 by calculating the reflectivity of the mirror. The detector is fabricated from semiconductor heterostructures grown by molecular beam epitaxy. The reflection spectrum, photoluminescence (PL) spectrum, photocurrent response, and channel current of the detector are tested and the results show that the RCEQDFET-SPD designed in this paper has better performances in photonic response and wavelength selection.展开更多
The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled wi...The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.展开更多
基金Project supported by Fok Ying Tung Education Foundation (Grant No 81008), the National Natural Science Foundation of China (Grant No 10225421).
文摘A scheme is proposed for the teleportation of an unknown atomic state. The scheme is based on the resonant interaction of atoms with a coherent cavity field. The mean photon-number of the cavity field is much smaller than one and thus the cavity decay can be effectively suppressed. Another advantage of the scheme is that only one cavity is required.
基金The project supported in part by National Natural Science Foundation of China under Grant Nos. 10175029, 10375039, and 10647007, the Doctoral Education Fund of Ministry of Education, the Research Fund of Nuclear Theory Center of HIRFL of China, and the Science and Technology Foundation of Sichuan Province under Grant No. 02GY029-189
文摘When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the enviroment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.
文摘A proposal is presented for teleporting Schr*iding-cat states. The process of the teleportation is achieved through the dispersive atom-cavity-field interaction. In this proposal, only measurement on the cavity field and on the singlet atomic states are used.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574022), the Funds of the Natural Science of Fujian Province, China (Grant No Z0512006).
文摘This paper proposes a scheme for realizing entanglement swapping in cavity QED. The scheme is based on the resonant interaction of a two-mode cavity field with a ∧-type three-level atom. In contrast with the previously proposed schemes, the present scheme is ascendant, since the fidelity is 1.0 and the joint measurement isn't needed. And the scheme is experimentally feasible based on the current cavity QED technique.
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
基金国家自然科学基金,Science Research Foundation ofEducation Office of Fujian Province of China,福州大学校科研和教改项目
文摘We propose a scheme for the reconstruction of a cavity field state. In the scheme the cavity field is first displaced by a microwave source, and then is placed in front of one slit of the two-slit apparatus. Ground state atoms pass through the apparatus, hitting upon the screen far away from the two-slit apparatus. The atom-field interaction is dispersive. The contrast of interference fringes is directly related to the Wigner function for the field state. The scheme can be easily generalized to measure the Wigner function of an entangled state of two spatially separated single-mode cavities.
基金Supported by the National Fundamental Research Program under Grant No.2007CB925204the National Natural Science Foundation of China under Grant Nos.10775048 and 10325523the Education Committee of Hunan Province under Grant No.08W012
文摘In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.
基金The project supported by the Natural Science Foundation of Shandong Province under Grant No. Y2004A09
文摘The cavity field spectrum of a cascade three-level atom interacting with single-mode field with Kerr-like medium in the cavity is investigated. The numerical results for the initial field in pure number state, coherent state and squeezed vacuum state are calculated, respectively. It is found that the Kerr-like medium affects the spectral structure even though the initial field is in vacuum when the atom is in upper level. In the case of strong input field, the number state spectrum shows two peaks with different heights; and the superposition state spectrum shows a multipeak structure with an equal distance of two neighboring peaks. The spectral "central frequency" shifts away from the resonant frequency with the increasing of average photon number.
文摘We consider the radiation from the beam electrons traveling in a strong uniform axial magnetic field and an axial alternating electric field of wavelength Aw generated by a voltage-supplied pill-box cavity. The beam electrons emit genuine laser radiation that propagates only in the axial direction through free-electron two- quantum Stark radiation. We find that laser radiation takes place only at the expense of the axial kinetic energy when Aw 〈〈 c/(ωc/γ), where ωc/γ is the relativistic electron--cyclotron frequency. We formulate the laser power based on quantum-wiggler electrodynamics, and envision a laser of length lore with estimated power 0.1 GW/(kA) in the 10-4 cm wavelength range.
文摘Employing Rayleigh's method, the collapse of a vaporous bubble in an incompressible liquid with surface tension is analysed. The expressions of time versus radius, bubble-wall velocity and pressure developed at collapse are thus introduced.Finally, the numerical solution of velocity and pressure field in the liquid surrounding the cavity is also given.
基金supported by the project of Large Research Infrastructures"China initiative Accelerator-Driven System"(No.2017-000052-75-01-000590)"Studies of intelligent LLRF control algorithms for superconducting RF cavities"(No.E129851YR0)the National Natural Science Foundation of China(No.12205344).
文摘The accurate measurement of parameters such as the cavity-loaded quality factor(Q_(L))and half bandwidth(f_(0.5))is essential for monitoring the performance of superconducting radio-frequency cavities.However,the conventional"field decay method"employed to calibrate these values requires the cavity to satisfy a"zero-input"condition.This can be challenging when the source impedance is mismatched and produce nonzero forward signals(V_(f))that significantly affect the measurement accuracy.To address this limitation,we developed a modified version of the"field decay method"based on the cavity differential equation.The proposed approach enables the precise calibration of f_(0.5) even under mismatch conditions.We tested the proposed approach on the SRF cavities of the Chinese Accelerator-Driven System Front-End Demo Superconducting Linac and compared the results with those obtained from a network analyzer.The two sets of results were consistent,indicating the usefulness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.61274125)the Natural Science Foundation of Beijing,China(Grant No.11DB1262)
文摘A resonant cavity-enhanced (RCE) quantum dot (QD) field-effect transistor (RCEQDFET) is designed for single- photon detection in this paper. Adding distributed Bragg reflection (DBR) mirrors to the single-photon detector (SPD), we improve the light absorption efficiency of the SPD. The effects of the reflectivity of the mirrors, the thickness and light absorption coefficient of the absorbing layer on the detector's light absorption efficiency are investigated, and the resonant cavity is determined by using the air/semiconductor interface as the mirror on the top. Through analyzing the relationship between the refractive index of AlxGal_xAs and A1 component, we choose A1As/Alo.15Gao.85As as the material of the mirror on the bottom. The pairs of A1As/Alo.15Gao.85As film are further determined to be 21 by calculating the reflectivity of the mirror. The detector is fabricated from semiconductor heterostructures grown by molecular beam epitaxy. The reflection spectrum, photoluminescence (PL) spectrum, photocurrent response, and channel current of the detector are tested and the results show that the RCEQDFET-SPD designed in this paper has better performances in photonic response and wavelength selection.
基金Project (10964004) supported by the National Natural Science Foundation of ChinaProject (20070731001) supported by Research Fund for the Doctoral Program of ChinaProject (096RJZA104) supported by the Natural Science Foundation of Gansu Province,China
文摘The influence of supercooled melt forced lamina flow on microsegregation was investigated. The concentration distribution at solid-liquid boundary of binary alloy Ni-Cu was simulated using phase field model coupled with flow field. The microsegregation, concentration maximum value, boundary thickness of concentration near upstream dendrite and normal to flow dendrite, and downstream dendrite were studied quantitatively in the case of forced lamia flow. The simulation results show that solute field and flow field interact complexly. Compared with melt without flow, in front of upstream dendrite tip, the concentration boundary thickness is the lowest and the concentration maximum value is the smallest for melt with flow. However, in front of downstream dendrite tip, the results are just the opposite. The zone of poor Cu in upstream dendrite where is the most severely microsegregation and shrinkage cavity is wider and the concentration is lower for melt with flow than that without flow.