High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial rem...High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial remote sensing cameras have been developed vigorously throughout the world over the last few decades, resulting in resolutions down to 0.31 m. In 2010, the Chinese government approved the implementation of the China High-resolution Earth Observation System(CHEOS) Major Special Project, giving priority to development of high resolution remote sensing satellites. More than half of CHEOS has been constructed to date and 5 satellites operate in orbit. These cameras have different characteristics. A number of innovative technologies have been adopted, which have led to camera performance increasing in leaps and bounds. The products and the production capability enables the remote sensing technical level to increase making it on a par with Europe and the US.展开更多
This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing ...This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.展开更多
Remote sensing satellites are playing very important roles in diverse earth observation fields.However,long revisit period,high cost and dense cloud cover have been the main limitations of satellite remote sensing for...Remote sensing satellites are playing very important roles in diverse earth observation fields.However,long revisit period,high cost and dense cloud cover have been the main limitations of satellite remote sensing for a long time.This paper introduces the novel volunteered passenger aircraft remote sensing(VPARS)concept,which can partly overcome these problems.By obtaining aerial imaging data from passengers using a portable smartphone on a passenger aircraft,it has various advantages including low cost,high revisit,dense coverage,and partial anti-cloud,which can well complement conventional remote sensing data.This paper examines the concept of VPARS and give general data processing framework of VPARS.Several cases were given to validate this processing approach.Two preliminary applications on land cover classification and economic activity monitoring validate the applicability of the VPARS data.Furthermore,we examine the issues about data maintenance,potential applications,limitations and challenges.We conclude the VPARS can benefit both scientific and industrial communities who rely on remote sensing data.展开更多
文摘High resolution remote sensing data has been applied in many fields such as national security, economic construction and in the daily life of the general public around the world, creating a huge market. Commercial remote sensing cameras have been developed vigorously throughout the world over the last few decades, resulting in resolutions down to 0.31 m. In 2010, the Chinese government approved the implementation of the China High-resolution Earth Observation System(CHEOS) Major Special Project, giving priority to development of high resolution remote sensing satellites. More than half of CHEOS has been constructed to date and 5 satellites operate in orbit. These cameras have different characteristics. A number of innovative technologies have been adopted, which have led to camera performance increasing in leaps and bounds. The products and the production capability enables the remote sensing technical level to increase making it on a par with Europe and the US.
基金This work is supported by Chinese Academy of Sciences‘Hundred Talents’project (No:KZCX0415)
文摘This paper introduces the applications of high-resolution remote sensing imagery and the necessity of geometric calibration for remote sensing sensors considering assurance of the geometric accuracy of remote sensing imagery. Then the paper analyzes the general methodology of geometric calibration. Taking the DMC sensor geometric calibration as an example, the paper discusses the whole calibration procedure. Finally, it gave some concluding remarks on geometric calibration of high-resolution remote sensing sensors.
基金supported by National Natural Science Foundation of China(41974006)Shenzhen Scientific Research and Development Funding Program(KQJSCX20180328093453763,JCYJ20180305125101282,JCYJ20170412142239369)+1 种基金Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation(KF-2018-03-004)Department of Education of Guangdong Province(2018KTSCX196).
文摘Remote sensing satellites are playing very important roles in diverse earth observation fields.However,long revisit period,high cost and dense cloud cover have been the main limitations of satellite remote sensing for a long time.This paper introduces the novel volunteered passenger aircraft remote sensing(VPARS)concept,which can partly overcome these problems.By obtaining aerial imaging data from passengers using a portable smartphone on a passenger aircraft,it has various advantages including low cost,high revisit,dense coverage,and partial anti-cloud,which can well complement conventional remote sensing data.This paper examines the concept of VPARS and give general data processing framework of VPARS.Several cases were given to validate this processing approach.Two preliminary applications on land cover classification and economic activity monitoring validate the applicability of the VPARS data.Furthermore,we examine the issues about data maintenance,potential applications,limitations and challenges.We conclude the VPARS can benefit both scientific and industrial communities who rely on remote sensing data.