Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbin...Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.展开更多
When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a win...When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary.A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50%discharge voltage.Lightning discharge tests of a 1:30 scale wind turbine model with 2,4,and 6 m air gaps were performed and the discharge process was observed.The experimental results demonstrated that when a 2 m air gap was used,the breakdown voltage increased as the blade speed was increased,but when the gap length was 4 m or longer,the trend was reversed and the breakdown voltage decreased.The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region,promotes upward leader development on the blade tip,and decreases the breakdown voltage.Thus,the blade rotation of a wind turbine increases its ability to trigger lightning strikes.展开更多
A very large scale wind turbine can be made as a circular large scale stator frame;the frame,which can reach some kilometers in diameter and some hundred meters in height,contains many circular sail trains.The stator ...A very large scale wind turbine can be made as a circular large scale stator frame;the frame,which can reach some kilometers in diameter and some hundred meters in height,contains many circular sail trains.The stator frame can be made using a light-weight tubular design.Wind can almost freely blow through this frame.Train rails are fixed at the outer surface of the frame as horizontal rings.The distance between the rails of one ring can be made to be several meters.As a result,the number of the rings can be ten or more.Each rail ring supports one sail train that is moved with wind power around the frame.The energy of this movement is transformed to electric power and is transmitted to the base of the frame.This design can be realized in a very large scale,which is difficult to achieve using a traditional three-blade turbine.展开更多
文摘Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.
基金supported by the China State Grid Corp headquarters project in 2015(SGTYHT/14JS-188)
文摘When a wind turbine is struck by lightning,its blades are usually rotating.The effect of blade rotation on a turbine's ability to trigger a lightning strike is unclear.Therefore,an arching electrode was used in a wind turbine lightning discharge test to investigate the difference in lightning triggering ability when blades are rotating and stationary.A negative polarity switching waveform of 250/2500 μs was applied to the arching electrode and the up-and-down method was used to calculate the 50%discharge voltage.Lightning discharge tests of a 1:30 scale wind turbine model with 2,4,and 6 m air gaps were performed and the discharge process was observed.The experimental results demonstrated that when a 2 m air gap was used,the breakdown voltage increased as the blade speed was increased,but when the gap length was 4 m or longer,the trend was reversed and the breakdown voltage decreased.The analysis revealed that the rotation of the blades changes the charge distribution in the blade-tip region,promotes upward leader development on the blade tip,and decreases the breakdown voltage.Thus,the blade rotation of a wind turbine increases its ability to trigger lightning strikes.
文摘A very large scale wind turbine can be made as a circular large scale stator frame;the frame,which can reach some kilometers in diameter and some hundred meters in height,contains many circular sail trains.The stator frame can be made using a light-weight tubular design.Wind can almost freely blow through this frame.Train rails are fixed at the outer surface of the frame as horizontal rings.The distance between the rails of one ring can be made to be several meters.As a result,the number of the rings can be ten or more.Each rail ring supports one sail train that is moved with wind power around the frame.The energy of this movement is transformed to electric power and is transmitted to the base of the frame.This design can be realized in a very large scale,which is difficult to achieve using a traditional three-blade turbine.