Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that st...Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.展开更多
In the first tier risk assessment(RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, ...In the first tier risk assessment(RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations(RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder(Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60 days using a real farmer's pesticide application protocol for apple cropping.Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism(t-RFLP) of the fungal Internal Transcribed Spacer(ITS) region of the ribonucleic acid(RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.展开更多
文摘Contribution of first flush runoff events from intense rainfall to downstream aquatic ecosystems are often reported in terms of sediment and nutrient delivery, with hardly any consideration to the contribution that standing, concentrated tailwater in primary aquatic systems makes to downstream nutrient loads. Two geographically distinct studies (Jonesboro Arkansas, and Stoneville Mississippi; 4 studies, n = 30) evaluated the effectiveness of drainage ditch systems to mitigate nutrient concentrations and loads. Within each independent study all experimental ditches had elevated background nutrient concentrations as a result of standing water, prior to the start of each simulated runoff experiment. These concentrations remained elevated 15-30 minutes post the start of each simulation as the concentrated, impounded water was pushed out through each system. In both these systems, it was hypothesized that water had accumulated in the respective drainage ditches and had been concentrated though evaporation and aquatic macrophyte transpiration. It is theorized that additional controlled drainage with improved dilution and hydraulic residence management.
文摘In the first tier risk assessment(RA) of pesticides, risk for aquatic communities is estimated by using results from standard laboratory tests with algae, daphnids and fish for single pesticides such as herbicides, fungicides, and insecticides. However, fungi as key organisms for nutrient cycling in ecosystems as well as multiple pesticide applications are not considered in the RA. In this study, the effects of multiple low pesticide pulses using regulatory acceptable concentrations(RACs) on the dynamics of non-target aquatic fungi were investigated in a study using pond mesocosm. For that, fungi colonizing black alder(Alnus glutinosa) leaves were exposed to multiple, low pulses of 11 different pesticides over a period of 60 days using a real farmer's pesticide application protocol for apple cropping.Four pond mesocosms served as treatments and 4 as controls. The composition of fungal communities colonizing the litter material was analyzed using a molecular fingerprinting approach based on the terminal Restriction Fragment Length Polymorphism(t-RFLP) of the fungal Internal Transcribed Spacer(ITS) region of the ribonucleic acid(RNA) gene(s). Our data indicated a clear fluctuation of fungal communities based on the degree of leaf litter degradation. However significant effects of the applied spraying sequence were not observed. Consequently also degradation rates of the litter material were not affected by the treatments. Our results indicate that the nutrient rich environment of the leaf litter material gave fungal communities the possibility to express genes that induce tolerance against the applied pesticides. Thus our data may not be transferred to other fresh water habitats with lower nutrient availability.