Redox response of trace heavy metals ions(THMIs) has better performance on highly ordered vertically oriented titania nanotube arrays(TNA) annealed in nitrogen. Experimental data showed that different THMIs posses...Redox response of trace heavy metals ions(THMIs) has better performance on highly ordered vertically oriented titania nanotube arrays(TNA) annealed in nitrogen. Experimental data showed that different THMIs possess different reaction peak shapes and charge and discharge capacities. Therefore, the TNA will become an important tool used for environmental protection and facilitating the rapid determination of THMIs. THMIs of 5×10^4 mol/L concentration were measured at a scan rate of 100 mV/s. The analytical utility of TNA is demonstrated in a neutral 0.5 mol/L Na2SO4 solution. The results sufficiently show that titania nanotube arrays electrodes(TNAE) will be used to measure THMIs.展开更多
The application of non-suppressed ion chromatography for monitoring of trace elements in air particulate matter was studied in the present investigation. The results indicate that the use of microwave acid digestion m...The application of non-suppressed ion chromatography for monitoring of trace elements in air particulate matter was studied in the present investigation. The results indicate that the use of microwave acid digestion method is superior in comparison with the conventional thermal acid digestion method as it leads to higher recovery, better reproducibility, lower volatility loss, better protection against environmental contamination and much less digestion time (5 minutes vs. 24 hours). The use of eluent as extractant is shown to reduce the water dip problem in the chro-matogram. The addition of chelating agent in the eluent coupled with UV detection is shown to provide satisfactory chromatographic separation and good sensitivity for the analysis of transition metals present in the air particulate matter. Using the U.S. National Bureau of Standards Reference Material 1648 Urban Particulate Matter as standard for checking, the analytical procedure is shown to give good recovery and reproducibility for the detection of the following cations and anions in air particulate matter: Fe2 Cu, Mn, Pb, Zn, Mg, Na, HN4+, Cl-, NO3- and SO42-. Field test was also performed to check the applicability of the method and the results obtained were discussed in the present paper.展开更多
High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, ...High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, Ca2+, Mg2+, NH4+, as well as methane sulfonic acid, were analyzed using ion chromatography. Trace metals in these samples, including Pb, Cu, Cd, V, Zn, Fe, and Al, were determined by inductively-coupled plasma mass spectrometry. Results showed that sea salt was the main component in aerosols at Great Wall Station. Most ions exhibited significant seasonal variations, with higher concentrations in summer and autumn than in winter and spring. Variations in ions and trace metals were related to several processes(or sources), including sea salt emission, secondary aerosol formation, and anthropogenic pollution from both local and distant sources. The sources of ions and trace metals were identified using enrichment factor, correlation, and factor analyses. Clearly, Na+, K+, Ca2+, and Mg2+were from marine sources, while Cu, Pb, Zn, and Cd were from anthropogenic pollution, and Al and V were mainly from crustal sources.展开更多
A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ion...A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ions (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, NO3-, HCO3-) and trace metals (Zn, Fe, Cu, Mn) of hailstone were determined. The result revealed that the average pH, EC, TDS were 6.95 ± 0.54, 356.3 ± 150.6 μS·cm-1 and 17.5 ± 2.89 mg·L-1, respectively. The water soluble ions followed the order: Ca2+ > Cl-1 > SO42- > HCO3- > Na+ > Mg2+ > K+ > NO3-. The concentrations of trace metals ranged in order with Zn > Fe > Cu, while the concentration of Mn was below detection limit. Sodium adsorption ratio (SAR) was 0.20 ± 0.09 meqL-1 which indicates it is benign to plants and safe for irrigation. The order of neutralization factor (calculated with average concentrations) found in hailstone was NFCa(1.16) > NFMg (0.36) > NFK(0.32) which were originated from earth crust. Notable correlation was found in between soil tracers Ca2+ and Mg2+ (r = 0.87), indicating their common source dust. Enrichment factor analysis revealed that Ca2+, Mg2+ and K+ are mainly from crust, whereas NO3- and SO42- are mainly attributable to anthropogenic origins. Further source contribution analysis revealed that anthropogenic actions accounted for 99.2% of total NO3- and 89.6% of total SO42-, while 99.2% of total Ca2+ and 95% Mg2+ were from crustal source.展开更多
文摘Redox response of trace heavy metals ions(THMIs) has better performance on highly ordered vertically oriented titania nanotube arrays(TNA) annealed in nitrogen. Experimental data showed that different THMIs possess different reaction peak shapes and charge and discharge capacities. Therefore, the TNA will become an important tool used for environmental protection and facilitating the rapid determination of THMIs. THMIs of 5×10^4 mol/L concentration were measured at a scan rate of 100 mV/s. The analytical utility of TNA is demonstrated in a neutral 0.5 mol/L Na2SO4 solution. The results sufficiently show that titania nanotube arrays electrodes(TNAE) will be used to measure THMIs.
文摘The application of non-suppressed ion chromatography for monitoring of trace elements in air particulate matter was studied in the present investigation. The results indicate that the use of microwave acid digestion method is superior in comparison with the conventional thermal acid digestion method as it leads to higher recovery, better reproducibility, lower volatility loss, better protection against environmental contamination and much less digestion time (5 minutes vs. 24 hours). The use of eluent as extractant is shown to reduce the water dip problem in the chro-matogram. The addition of chelating agent in the eluent coupled with UV detection is shown to provide satisfactory chromatographic separation and good sensitivity for the analysis of transition metals present in the air particulate matter. Using the U.S. National Bureau of Standards Reference Material 1648 Urban Particulate Matter as standard for checking, the analytical procedure is shown to give good recovery and reproducibility for the detection of the following cations and anions in air particulate matter: Fe2 Cu, Mn, Pb, Zn, Mg, Na, HN4+, Cl-, NO3- and SO42-. Field test was also performed to check the applicability of the method and the results obtained were discussed in the present paper.
基金supported by the National Natural Science Foundation of China (Grant nos. 41230529 and 41476172)the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant no. CHINARE2012-15 for 01-04-02, 02-01, and 03-0402)Chinese International Cooperation Projects, Chinese Arctic and Antarctic Adminstration (Grant nos. 2015DFG22010, IC201201, IC201308 and IC201513)
文摘High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, Ca2+, Mg2+, NH4+, as well as methane sulfonic acid, were analyzed using ion chromatography. Trace metals in these samples, including Pb, Cu, Cd, V, Zn, Fe, and Al, were determined by inductively-coupled plasma mass spectrometry. Results showed that sea salt was the main component in aerosols at Great Wall Station. Most ions exhibited significant seasonal variations, with higher concentrations in summer and autumn than in winter and spring. Variations in ions and trace metals were related to several processes(or sources), including sea salt emission, secondary aerosol formation, and anthropogenic pollution from both local and distant sources. The sources of ions and trace metals were identified using enrichment factor, correlation, and factor analyses. Clearly, Na+, K+, Ca2+, and Mg2+were from marine sources, while Cu, Pb, Zn, and Cd were from anthropogenic pollution, and Al and V were mainly from crustal sources.
文摘A comprehensive analysis on the chemical composition and source apportionment of hailstone samples were conducted in Dhaka, Bangladesh. pH, electrical conductivity (EC), total dissolved solids (TDS), water soluble ions (Na+, K+, Ca2+, Mg2+, Cl-, SO42-, NO3-, HCO3-) and trace metals (Zn, Fe, Cu, Mn) of hailstone were determined. The result revealed that the average pH, EC, TDS were 6.95 ± 0.54, 356.3 ± 150.6 μS·cm-1 and 17.5 ± 2.89 mg·L-1, respectively. The water soluble ions followed the order: Ca2+ > Cl-1 > SO42- > HCO3- > Na+ > Mg2+ > K+ > NO3-. The concentrations of trace metals ranged in order with Zn > Fe > Cu, while the concentration of Mn was below detection limit. Sodium adsorption ratio (SAR) was 0.20 ± 0.09 meqL-1 which indicates it is benign to plants and safe for irrigation. The order of neutralization factor (calculated with average concentrations) found in hailstone was NFCa(1.16) > NFMg (0.36) > NFK(0.32) which were originated from earth crust. Notable correlation was found in between soil tracers Ca2+ and Mg2+ (r = 0.87), indicating their common source dust. Enrichment factor analysis revealed that Ca2+, Mg2+ and K+ are mainly from crust, whereas NO3- and SO42- are mainly attributable to anthropogenic origins. Further source contribution analysis revealed that anthropogenic actions accounted for 99.2% of total NO3- and 89.6% of total SO42-, while 99.2% of total Ca2+ and 95% Mg2+ were from crustal source.