The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laborato...The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.展开更多
The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. ...The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.展开更多
Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversi...Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversion method is investigated with sensitivity experiments and real data from the first release of the European Tracer Experiment(ETEX-1).The two-step inversion method is based on the principle of least squares and carries out additional model correction through the residual iterative process.To evaluate its performance,its retrieval results are compared with those of two other existing algorithms.It is shown that for those cases with richer measurements,all three methods are less sensitive to errors,while for cases where measurements are sparse,their retrieval accuracy will rapidly decrease as errors increase.From the results of sensitivity experiments,the new method provides higher estimation accuracy and a more stable performance than the other two methods.The new method presents the smallest maximum location error of 18.20 km when the amplitude of the measurement error increases to 100%,and 22.67 km when errors in the wind fields increase to 200%.Moreover,when applied to ETEX-1 data,the new method also exhibits good performance,with a location error of 4.71 km,which is the best estimation with respect to source location.展开更多
The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institu...The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...展开更多
Penetrating fronts play an important role in the cross-shelf transport of terrestrial materials in the East China Sea(ECS). Using long-term satellite remote sensing data and numerical simulation data, the most likely ...Penetrating fronts play an important role in the cross-shelf transport of terrestrial materials in the East China Sea(ECS). Using long-term satellite remote sensing data and numerical simulation data, the most likely period of occurrence and region of the penetrating fronts in the western ECS are analyzed in this study, and the evolutionary process and mechanism are also investigated. The statistical results of satellite-derived chlorophyll data from 1998 to 2022(25 years) reveal that penetrating fronts occur most frequently near 27°N in winter, with the frequencies of occurrence in January, February and March being 47%,65% and 64%, respectively. Backward Lagrangian tracer experiments demonstrate that the penetrating water near 27°N originate from three different regions. The core penetrating low-salinity water originates from the Zhejiang-Fujian coast, while the northern marginal water originates from the northern part of Taiwan Island, and the southern marginal water originates from the central Taiwan Strait. Mechanism analysis reveals that the core penetrating low-salinity water evolves in three successive stages.First, under the influence of the Zhejiang-Fujian Coastal Current driven by strong northeasterly winds, the low-salinity water along the Zhejiang-Fujian coast moves southwestward parallel to the coastline and accumulates in the western Taiwan Strait.Second, during the relaxation stage of the northeasterly wind, the northeastward Taiwan Strait Current strengthens, and the lowsalinity water accumulated in the western Taiwan Strait moves to the northeast. Third, when the northeastward-moving lowsalinity water runs into the Western Kuroshio Branch off the northeastern Taiwan Island, the low-salinity water is rapidly stretched eastward, and a significant penetrating front eventually appears. Since the synoptic northeasterly wind and the Western Kuroshio Branch are dominant dynamic factors in this region during wintertime, we believe that the synoptic wintertime penetrating fronts near 27°N are common and important phenomena that play important roles in the cross-shelf transport of terrestrial materials in the ECS.展开更多
基金The open foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HESS-2006the Shanxi Province Science Foundation under contract No.202103021224116the research project supported by Shanxi Scholarship Council of China under contract No.2023-067.
文摘The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.
基金Project 40373044 supported by the National Natural Science Foundation of China
文摘The Ordovician karst groundwater in the Qiligou basin is an important water supply source. This groundwater has been seriously contaminated in recent years by Cfl4 from a pesticide plant located in the recharge area. The highest concentration of CCl4 in the groundwater is 3909.2μg/L. Large scale tracer experiments were carried out to study the conveying conduits for Cfl4 in the basin on May 1-6, 2005. Nontoxic, edible glucose was used as a tracer and it was detected by spectrophotometric techniques. Well area of the basin, was employed for injecting the tracer X-61, located near the pesticide plant in the southern recharge Ten wells widely located in the groundwater runoff area were used as observing and sampling wells. The results show that the migration of the pollutants is controlled by the water hydrodynamic field and by the development of karst conduits. The tracer did not enter the up-drainage wells, X-49 and X-47, near the injection point because the water levels at these wells are higher than at the injection point. The adjacent well X-62 is close to the injection site, but the tracer reached the well after eleven hours. Wells X-43, X-59, X-58, YY-1 and X-57, located in the syncline axis runoff area, are respectively 2.5, 3.5, 4.33, 4.38 and 5.44 kilometers from the in- jection site. The time for initial appearance of tracer was 4, 4, 2, 6 and 4 hours, respectively. The maximum runoff velocity (well X-58) is over two kilometers per hour, indicating that the karst conduits are well developed along the syncline basin axis. These conduits are the main conveying conduits for groundwater and Cfl4. Closer wells were not necessarily the first to receive tracer. This shows the inhomogeneity in karst development which causes complex runoff, and pollutant migration, patterns.
基金supported by the National Key R&D Program of China[grant numbers 2017YFC1501803 and 2017YFC1502102].
文摘Fast and accurate identification of unknown pollution sources plays a crucial role in the emergency response and source control of air pollution.In this work,the applicability of a previously proposed two-step inversion method is investigated with sensitivity experiments and real data from the first release of the European Tracer Experiment(ETEX-1).The two-step inversion method is based on the principle of least squares and carries out additional model correction through the residual iterative process.To evaluate its performance,its retrieval results are compared with those of two other existing algorithms.It is shown that for those cases with richer measurements,all three methods are less sensitive to errors,while for cases where measurements are sparse,their retrieval accuracy will rapidly decrease as errors increase.From the results of sensitivity experiments,the new method provides higher estimation accuracy and a more stable performance than the other two methods.The new method presents the smallest maximum location error of 18.20 km when the amplitude of the measurement error increases to 100%,and 22.67 km when errors in the wind fields increase to 200%.Moreover,when applied to ETEX-1 data,the new method also exhibits good performance,with a location error of 4.71 km,which is the best estimation with respect to source location.
文摘The German Armed Forces University in Munich has conducted experiments in a laboratory flume to determine the influence of roundness on bed load transport.The investigations were assigned by the German Federal Institute of Hydrology (BIG),with a focus on incipient motion,transport velocity and the depth of mixing into the riverbed. The results of the experiments show that the transport velocity of angular graim is lower and the critical shear stress for incipient motion is slightly higher than of well-ro...
基金supported by the National Natural Science Foundation of China (Grant Nos. 42230404 & 42276021)the National Key R&D Program of China (Grant Nos. 2022YFC3103402 & 2023YFD2401904)+1 种基金the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY21D060003)the high-performance computing cluster of the State Key Laboratory of Satellite Ocean Environment Dynamics。
文摘Penetrating fronts play an important role in the cross-shelf transport of terrestrial materials in the East China Sea(ECS). Using long-term satellite remote sensing data and numerical simulation data, the most likely period of occurrence and region of the penetrating fronts in the western ECS are analyzed in this study, and the evolutionary process and mechanism are also investigated. The statistical results of satellite-derived chlorophyll data from 1998 to 2022(25 years) reveal that penetrating fronts occur most frequently near 27°N in winter, with the frequencies of occurrence in January, February and March being 47%,65% and 64%, respectively. Backward Lagrangian tracer experiments demonstrate that the penetrating water near 27°N originate from three different regions. The core penetrating low-salinity water originates from the Zhejiang-Fujian coast, while the northern marginal water originates from the northern part of Taiwan Island, and the southern marginal water originates from the central Taiwan Strait. Mechanism analysis reveals that the core penetrating low-salinity water evolves in three successive stages.First, under the influence of the Zhejiang-Fujian Coastal Current driven by strong northeasterly winds, the low-salinity water along the Zhejiang-Fujian coast moves southwestward parallel to the coastline and accumulates in the western Taiwan Strait.Second, during the relaxation stage of the northeasterly wind, the northeastward Taiwan Strait Current strengthens, and the lowsalinity water accumulated in the western Taiwan Strait moves to the northeast. Third, when the northeastward-moving lowsalinity water runs into the Western Kuroshio Branch off the northeastern Taiwan Island, the low-salinity water is rapidly stretched eastward, and a significant penetrating front eventually appears. Since the synoptic northeasterly wind and the Western Kuroshio Branch are dominant dynamic factors in this region during wintertime, we believe that the synoptic wintertime penetrating fronts near 27°N are common and important phenomena that play important roles in the cross-shelf transport of terrestrial materials in the ECS.