We show that the following properties of the C*-algebras in a class P are inherited by simple unital C*-algebras in the class of asymptotically tracially in P :(1) n-comparison,(2) α-comparison(1 ≤ α < ∞).
We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an ap...We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an application,let A be an infinite dimensional simple unital C-algebra such that A has one of the above-listed properties.Suppose that α:G→Aut(A) is an action of a finite group G on A which has the tracial Rokhlin property.Then the crossed product C^*-algebra C^*(G,A,α) also has the property under consideration.展开更多
We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self abs...We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.展开更多
We study the uniform property Γ for separable simple C^(*)-algebras which have quasitraces and may not be exact. We show that a stably finite separable simple C^(*)-algebra A with the strict comparison and uniform pr...We study the uniform property Γ for separable simple C^(*)-algebras which have quasitraces and may not be exact. We show that a stably finite separable simple C^(*)-algebra A with the strict comparison and uniform property Γ has tracial approximate oscillation zero and stable rank one. Moreover in this case,its hereditary C^(*)-subalgebras also have a version of uniform property Γ. If a separable non-elementary simple amenable C^(*)-algebra A with strict comparison has this hereditary uniform property Γ, then A is Z-stable.展开更多
基金Supported by the National Natural Sciences Foundation of China (Grant No. 11871375)。
文摘We show that the following properties of the C*-algebras in a class P are inherited by simple unital C*-algebras in the class of asymptotically tracially in P :(1) n-comparison,(2) α-comparison(1 ≤ α < ∞).
基金Supported by National Natural Sciences Foundation of China(Grant Nos.11501357 and 11571008)。
文摘We show that the following properties of the C^*-algebras in a class Ω are inherited by simple unital C-algebras in the class TAΩ:(1)(m,n)-decomposable,(2) weakly(m,n)-divisible,(3) weak Riesz interpolation.As an application,let A be an infinite dimensional simple unital C-algebra such that A has one of the above-listed properties.Suppose that α:G→Aut(A) is an action of a finite group G on A which has the tracial Rokhlin property.Then the crossed product C^*-algebra C^*(G,A,α) also has the property under consideration.
基金supported by the Research Center for Operator Algebras at East China Normal University which is funded by the Science and Technology Commission of Shanghai Municipality (Grant No.13dz2260400)National Natural Science Foundation of China (Grant No.11531003)+1 种基金Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice (Grant No.1361431)the special fund for the Short-Term Training of Graduate Students from East China Normal University。
文摘We give a necessary and sufficient condition where a generalized inductive limit becomes a simple C^(*)-algebra. We also show that if a unital C^(*)-algebra can be approximately embedded into some tensorially self absorbing C^(*)-algebra C(e.g., uniformly hyperfinite(UHF)-algebras of infinite type, the Cuntz algebra O_(2)),then we can construct a simple separable unital generalized inductive limit. When C is simple and infinite(resp.properly infinite), the construction is also infinite(resp. properly infinite). When C is simple and approximately divisible, the construction is also approximately divisible. When C is a UHF-algebra and the connecting maps satisfy a trace condition, the construction has tracial rank zero.
基金supported by National Science Foundation of USA (Grant No.DMS1954600)the Research Center for Operator Algebras in East China Normal University which is supported by Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,Science and Technology Commission of Shanghai Municipality (Grant No.22DZ2229014)。
文摘We study the uniform property Γ for separable simple C^(*)-algebras which have quasitraces and may not be exact. We show that a stably finite separable simple C^(*)-algebra A with the strict comparison and uniform property Γ has tracial approximate oscillation zero and stable rank one. Moreover in this case,its hereditary C^(*)-subalgebras also have a version of uniform property Γ. If a separable non-elementary simple amenable C^(*)-algebra A with strict comparison has this hereditary uniform property Γ, then A is Z-stable.