Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,ca...Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.展开更多
Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programmin...Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.展开更多
Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of th...Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of the target characteristic parameters, the target detection and track accuracy is increased. Also, by multilevel filtering processing, the diverging points of the echo signal are condensed, which improves the performance of identifying and tracking multiple targets. Simulation results show that compared with traditional TBD algorithms, the presented algorithm has better performance in the aspects of multi-target tracking, detecting and distinguishing.展开更多
基金supported by the National Natural Science Foundation of China (No.61971412)。
文摘Underwater monopulse space-time adaptive track-before-detect method,which combines space-time adaptive detector(STAD)and the track-before-detect algorithm based on dynamic programming(DP-TBD),denoted as STAD-DP-TBD,can effectively detect low-speed weak targets.However,due to the complexity and variability of the underwater environment,it is difficult to obtain sufficient secondary data,resulting in a serious decline in the detection and tracking performance,and leading to poor robustness of the algorithm.In this paper,based on the adaptive matched filter(AMF)test and the RAO test,underwater monopulse AMF-DP-TBD algorithm and RAO-DP-TBD algorithm which incorporate persymmetry and symmetric spectrum,denoted as PSAMF-DP-TBD and PS-RAO-DP-TBD,are proposed and compared with the AMF-DP-TBD algorithm and RAO-DP-TBD algorithm based on persymmetry array,denoted as P-AMF-DP-TBD and P-RAO-DP-TBD.The simulation results show that the four methods can work normally with sufficient secondary data and slightly insufficient secondary data,but when the secondary data is severely insufficient,the P-AMF-DP-TBD and P-RAO-DP-TBD algorithms has failed while the PSAMF-DP-TBD and PS-RAO-DP-TBD algorithms still have good detection and tracking capabilities.
基金supported by the National Natural Science Foundation of China(Grant No.61001137)the Pre-Research Foundation(Grant No.9140A07020311HK0116)
文摘Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.
基金supported by the Innovation Subject of the Shenyang Institute of Automation,Chinese Academy of Science(YOF5150501)
文摘Considering radar detection for multi-target recognition, a track before detect (TBD) algorithm based on Hough transform is adopted for identifying and tracking multi-target radar. By increasing the dimensions of the target characteristic parameters, the target detection and track accuracy is increased. Also, by multilevel filtering processing, the diverging points of the echo signal are condensed, which improves the performance of identifying and tracking multiple targets. Simulation results show that compared with traditional TBD algorithms, the presented algorithm has better performance in the aspects of multi-target tracking, detecting and distinguishing.