期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Track Defects Recognition Based on Axle-Box Vibration Acceleration and Deep- Learning Techniques
1
作者 Xianxian Yin Shimin Yin +1 位作者 Yiming Bu Xiukun Wei 《Structural Durability & Health Monitoring》 EI 2024年第5期623-640,共18页
As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail ... As an important component of load transfer,various fatigue damages occur in the track as the rail service life and train traffic increase gradually,such as rail corrugation,rail joint damage,uneven thermite welds,rail squats fas-tener defects,etc.Real-time recognition of track defects plays a vital role in ensuring the safe and stable operation of rail transit.In this paper,an intelligent and innovative method is proposed to detect the track defects by using axle-box vibration acceleration and deep learning network,and the coexistence of the above-mentioned typical track defects in the track system is considered.Firstly,the dynamic relationship between the track defects(using the example of the fastening defects)and the axle-box vibration acceleration(ABVA)is investigated using the dynamic vehicle-track model.Then,a simulation model for the coupled dynamics of the vehicle and track with different track defects is established,and the wavelet power spectrum(WPS)analysis is performed for the vibra-tion acceleration signals of the axle box to extract the characteristic response.Lastly,using wavelet spectrum photos as input,an automatic detection technique based on the deep convolution neural network(DCNN)is sug-gested to realize the real-time intelligent detection and identification of various track problems.Thefindings demonstrate that the suggested approach achieves a 96.72%classification accuracy. 展开更多
关键词 track defects intelligent detection deep convolution neural network acceleration of axle-box vibration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部