Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have on...Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given.展开更多
The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze th...The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.展开更多
The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrati...The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.展开更多
In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The la...In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.展开更多
We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eu...We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.展开更多
The treatment of moving material interfaces and their vicinity is very important for compressible multifluids. In this paper, we propose one type of ghost fluid method based on Riemann solutions for front tracking met...The treatment of moving material interfaces and their vicinity is very important for compressible multifluids. In this paper, we propose one type of ghost fluid method based on Riemann solutions for front tracking method. The accuracy of the interface boundary condition is discussed for the gas-gas Riemann problem. It is shown that the solution of the ghost fluid method approximates the exact solution to second-order accuracy in the sense of comparing to the exact solution of a Riemann problem at the material interface. Numerical examples suggest that the present scheme is able to handle multifluids problems with large density differences and has the property of reduced conservation error.展开更多
An active application of a concrete track is expected for the future construction of railroads. For successful concrete track construction and operation in earthwork areas, the residual settlement should be reasonably...An active application of a concrete track is expected for the future construction of railroads. For successful concrete track construction and operation in earthwork areas, the residual settlement should be reasonably controlled by using an appro- priate method. The maintenance for excessive settlement is very difficult on the operating line because the maintenance method is very restrictive. The objective of this study is to introduce pressurized rapid-hardening cement grouting (PRCG) method to restore a subsided concrete track without any adverse effects on train operation. This method involves the use of special types of materials (very quick hardening and middle-hardening mortar), compact grouting equipment, and a special construction process. In spite of the extremely restrictive environment, this method has been demonstrated to be very effective and reasonable through laboratory and field tests.展开更多
Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. ...Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. Todemonstrate the feasibility of the method, the track of Typhoon Yancy(9012) isconcerned with. The numerical results show that the method can describe the tendency of looping qualitatively.展开更多
Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along ...Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is po|yline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu- lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.展开更多
Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single...Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.展开更多
This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorp...This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou's modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.展开更多
The least-square gridless method was extended to simulate the compressible multi-material flows. The algorithm was accomplished to solve the Arbitrary Lagrange-Euler( ALE) formulation. The local least-square curve fit...The least-square gridless method was extended to simulate the compressible multi-material flows. The algorithm was accomplished to solve the Arbitrary Lagrange-Euler( ALE) formulation. The local least-square curve fits was adopted to approximate the spatial derivatives of a point on the base of the points in its circular support domain,and the basis function was linear. The HLLC( Harten-Lax-van Leer-Contact) scheme was used to calculate the inviscid flux. On the material interfaces,the gridless points were endued with a dual definition corresponding to different materials. The moving velocity of the interface points was updated by solving the Riemann problem. The interface boundary condition was built by using the Ghost Fluid Method( GFM).Computations were performed for several one and two dimensional typical examples. The numerical results show that the interface and the shock wave are well captured,which proves the effectiveness of gridless method in dealing with multi-material flow problems.展开更多
A nonzero intermediate frequency (IF) likelihood acquisition scheme designed for S-band Single Access (SSA) link of China’s Tracking and Data Relay Satellite System (CTDRSS) is introduced. The received signal is down...A nonzero intermediate frequency (IF) likelihood acquisition scheme designed for S-band Single Access (SSA) link of China’s Tracking and Data Relay Satellite System (CTDRSS) is introduced. The received signal is downconverted to IF, and then direct sampled in IF using a 1-bit A/D. After the digitalization, the sampled data is detected using a hybrid likelihood acquisition scheme. Using this structure, large noise figure of the analog mixer or active filters, amplitude and phase imbalance between low-frequency in-phase and quandrature-phase channel can be avoided. An easy designing algorithm of the acquisition scheme is also derived. The performance and algorithm are verified by computer simulation.展开更多
A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities ...A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.展开更多
In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference alg...In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.展开更多
This paper considers the tracking performance problem of a model reference robust control (MRRC) for plants with relative degree greater than one. A new algorithm is proposed based on the earlier research. It is shown...This paper considers the tracking performance problem of a model reference robust control (MRRC) for plants with relative degree greater than one. A new algorithm is proposed based on the earlier research. It is shown that by applying a special transformation to the tracking system,the L∞ bound of the tracking error can be achieved even when the high frequency gain is unknown,and both the tracking performance and the control effort can be improved significantly. Furthermore,the strictly positive real (SPR) condition, which is an essential assumption of the earlier design, can be removed.展开更多
基金supported by National Science Foundation of China (10576015)
文摘Recent years the modify ghost fluid method (MGFM) and the real ghost fluid method (RGFM) based on Riemann problem have been developed for multimedium compressible flows. According to authors, these methods have only been used with the level set technique to track the interface. In this paper, we combine the MCFM and the RGFM respectively with front tracking method, for which the fluid interfaces are explicitly tracked by connected points. The method is tested with some one-dimensional problems, and its applicability is also studied. Furthermore, in order to capture the interface more accurately, especially for strong shock impacting on interface, a shock monitor is proposed to determine the initial states of the Riemann problem. The present method is applied to various one- dimensional problems involving strong shock-interface interaction. An extension of the present method to two dimension is also introduced and preliminary results are given.
文摘The particle path tracking method is proposed and used in two-dimensional(2D) and three-dimensional(3D) numerical simulations of continuously rotating detonation engines(CRDEs). This method is used to analyze the combustion and expansion processes of the fresh particles, and the thermodynamic cycle process of CRDE. In a 3D CRDE flow field, as the radius of the annulus increases, the no-injection area proportion increases, the non-detonation proportion decreases, and the detonation height decreases. The flow field parameters on the 3D mid annulus are different from in the 2D flow field under the same chamber size. The non-detonation proportion in the 3D flow field is less than in the 2D flow field. In the 2D and 3D CRDE, the paths of the flow particles have only a small fluctuation in the circumferential direction. The numerical thermodynamic cycle processes are qualitatively consistent with the three ideal cycle models, and they are right in between the ideal F–J cycle and ideal ZND cycle. The net mechanical work and thermal efficiency are slightly smaller in the 2D simulation than in the 3D simulation. In the 3D CRDE, as the radius of the annulus increases, the net mechanical work is almost constant, and the thermal efficiency increases. The numerical thermal efficiencies are larger than F–J cycle, and much smaller than ZND cycle.
基金supported by the Fundamental Research Funds for the Central Universities Project(CDJZR10170010)
文摘The mean shift tracker has difficulty in tracking fast moving targets and suffers from tracking error accumulation problem. To overcome the limitations of the mean shift method, a new approach is proposed by integrating the mean shift algorithm and frame-difference methods. The rough position of the moving tar- get is first located by the direct frame-difference algorithm and three-frame-difference algorithm for the immobile camera scenes and mobile camera scenes, respectively. Then, the mean shift algorithm is used to achieve precise tracking of the target. Several tracking experiments show that the proposed method can effectively track first moving targets and overcome the tracking error accumulation problem.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872222 and 50921063)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110191110037)the Fundamental Research Funds for the Central Universities,China(Grant Nos.CDJXS11240011 and CDJXS10241103)
文摘In this paper, an improved incompressible multi-relaxation-time lattice Boltzmann-front tracking approach is proposed to simulate two-phase flow with a sharp interface, where the surface tension is implemented. The lattice Boltzmann method is used to simulate the incompressible flow with a stationary Eulerian grid, an additional moving Lagrangian grid is adopted to track explicitly the motion of the interface, and an indicator function is introduced to update the fluid properties accurately. The interface is represented by using a four-order Lagrange polynomial through fitting a set of discrete marker points, and then the surface tension is directly computed by using the normal vector and curvature of the interface. Two benchmark problems, including Laplace's law for a stationary bubble and the dispersion relation of the capillary wave between two fluids are conducted for validation. Excellent agreement is obtained between the numerical simulations and the theoretical results in the two cases.
基金supported by the National Natural Science Foundation of China(Grant No.11572062)the Fundamental Research Funds for the Central Universities,China(Grant No.CDJZR13248801)+2 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT13043)Key Laboratory of Functional Crystals and Laser Technology,TIPCChinese Academy of Sciences
文摘We developed a three-dimensional multi-relaxation-time lattice Boltzmann method for incompressible and immiscible two-phase flow by coupling with a front-tracking technique. The flow field was simulated by using an Eulerian grid, an adaptive unstructured triangular Lagrangian grid was applied to track explicitly the motion of the two-fluid interface, and an indicator function was introduced to update accurately the fluid properties. The surface tension was computed directly on a triangular Lagrangian grid, and then the surface tension was distributed to the background Eulerian grid. Three benchmarks of two-phase flow, including the Laplace law for a stationary drop, the oscillation of a three-dimensional ellipsoidal drop, and the drop deformation in a shear flow, were simulated to validate the present model.
文摘The treatment of moving material interfaces and their vicinity is very important for compressible multifluids. In this paper, we propose one type of ghost fluid method based on Riemann solutions for front tracking method. The accuracy of the interface boundary condition is discussed for the gas-gas Riemann problem. It is shown that the solution of the ghost fluid method approximates the exact solution to second-order accuracy in the sense of comparing to the exact solution of a Riemann problem at the material interface. Numerical examples suggest that the present scheme is able to handle multifluids problems with large density differences and has the property of reduced conservation error.
文摘An active application of a concrete track is expected for the future construction of railroads. For successful concrete track construction and operation in earthwork areas, the residual settlement should be reasonably controlled by using an appro- priate method. The maintenance for excessive settlement is very difficult on the operating line because the maintenance method is very restrictive. The objective of this study is to introduce pressurized rapid-hardening cement grouting (PRCG) method to restore a subsided concrete track without any adverse effects on train operation. This method involves the use of special types of materials (very quick hardening and middle-hardening mortar), compact grouting equipment, and a special construction process. In spite of the extremely restrictive environment, this method has been demonstrated to be very effective and reasonable through laboratory and field tests.
文摘Contour dynamics (CD) method for the motions of typhoon is presented in this paper. The effect of asymmetric inner structure on the typhoon'sanomalous track has been discussed in different environmental steering. Todemonstrate the feasibility of the method, the track of Typhoon Yancy(9012) isconcerned with. The numerical results show that the method can describe the tendency of looping qualitatively.
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金financial support from the National Natural Science Foundation of China under Grant No.50978007
文摘Weak structural surface is one of the key factors controlling the stability of slopes. The stability of rock slopes is in general concerned with set of discontinuities. However, in soft rocks, failure can occur along surfaces approaching to a circular failure surface. To better understand the position of potential sliding surface, a new method called simplex-finite stochastic tracking method is proposed. This method basically divides sliding surface into two parts: one is described by smooth curve obtained by random searching, the other one is po|yline formed by the weak structural surface. Single or multiple sliding surfaces can be considered, and consequently several types of combined sliding surfaces can be simu- lated. The paper will adopt the arc-polyline to simulate potential sliding surface and analyze the searching process of sliding surface. Accordingly, software for slope stability analysis using this method was developed and applied in real cases. The results show that, using simplex-finite stochastic tracking method, it is possible to locate the position of a potential sliding surface in the slope.
基金supported by the National Science Foundation of China(61472289)National Key Research and Development Project(2016YFC0106305)The Key Technology R&D Program of Hubei Provence(2014BAA153)
文摘Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.
基金support from the Natural Science Foundation of China(Grant Nos.11272048,51239006 and 11572178)the Tsinghua University Initiative Scientific Research Program
文摘This paper describes the application of a three-dimensional lattice Boltzmann method (LBM) to Newtonian and non-Newtonian (Bingham fluid in this work) flows with free surfaces. A mass tracking algorithm was incorporated to capture the free surface, whereas Papanastasiou's modified model was used for Bingham fluids. The lattice Boltzmann method was first validated using two benchmarks: Newtonian flow through a square cross-section tube and Bingham flow through a circular cross-section tube. Afterward, the dam-break problem for the Newtonian fluid and the slump test for Bingham fluid were simulated to validate the free-surface-capturing algorithm. The numerical results were in good agreement with analytical results, as well as other simulations, thereby proving the validity and correctness of the current method. The proposed method is a promising substitute for time-consuming and costly physical experiments to solve problems encountered in geotechnical and geological engineering, such as the surge and debris flow induced by a landslide or earthquake.
文摘The least-square gridless method was extended to simulate the compressible multi-material flows. The algorithm was accomplished to solve the Arbitrary Lagrange-Euler( ALE) formulation. The local least-square curve fits was adopted to approximate the spatial derivatives of a point on the base of the points in its circular support domain,and the basis function was linear. The HLLC( Harten-Lax-van Leer-Contact) scheme was used to calculate the inviscid flux. On the material interfaces,the gridless points were endued with a dual definition corresponding to different materials. The moving velocity of the interface points was updated by solving the Riemann problem. The interface boundary condition was built by using the Ghost Fluid Method( GFM).Computations were performed for several one and two dimensional typical examples. The numerical results show that the interface and the shock wave are well captured,which proves the effectiveness of gridless method in dealing with multi-material flow problems.
文摘A nonzero intermediate frequency (IF) likelihood acquisition scheme designed for S-band Single Access (SSA) link of China’s Tracking and Data Relay Satellite System (CTDRSS) is introduced. The received signal is downconverted to IF, and then direct sampled in IF using a 1-bit A/D. After the digitalization, the sampled data is detected using a hybrid likelihood acquisition scheme. Using this structure, large noise figure of the analog mixer or active filters, amplitude and phase imbalance between low-frequency in-phase and quandrature-phase channel can be avoided. An easy designing algorithm of the acquisition scheme is also derived. The performance and algorithm are verified by computer simulation.
基金Supported by State Key Laboratory of Robotics and Systems(HIT)(SKLRS-2010-ZD-04)Capital Medical Development Scientific Research Fund(20092098)
文摘A barrier-free wheelchair robot with a mechanism coupled by wheel and track is presen- ted in this paper. Using the wheelchair, the lower limb disabled persons could be more relaxed to take part in outdoor activities whether on flat ground or stairs and obstacles in the city. The wheel- track coupling mechanism is designed and the stability of the bodywork of the wheelchair robot on the stairs is analyzed. In order to obtain the stability of wheelchair robot when it climbs obstacles, centroid projection method is applied to analyze the static stability, stability margin is proposed to provide the stability under some dynamic forces, and the push rod rotation angle in terms of the guaranteed stability margin is given. Finally, the dynamic model of the wheelchair robot based on Lagrange equation is established, which can be a theoretical foundation for the wheelchair control system design.
基金supported by ZTE Industry-Academia-Research Cooperation Funds
文摘In this paper,a non-contact auto-focusing method is proposed for the essential function of auto-focusing in mobile devices.Firstly,we introduce an effective target detection method combining the 3-frame difference algorithm and Gauss mixture model,which is robust for complex and changing background.Secondly,a stable tracking method is proposed using the local binary patter feature and camshift tracker.Auto-focusing is achieved by using the coordinate obtained during the detection and tracking procedure.Experiments show that the proposed method can deal with complex and changing background.When there exist multiple moving objects,the proposed method also has good detection and tracking performance.The proposed method implements high efficiency,which means it can be easily used in real mobile device systems.
基金Supported by Natural Science Foundation of P. R. China (60174001)Natural Science Foundation of Beijing (4022007)
文摘This paper considers the tracking performance problem of a model reference robust control (MRRC) for plants with relative degree greater than one. A new algorithm is proposed based on the earlier research. It is shown that by applying a special transformation to the tracking system,the L∞ bound of the tracking error can be achieved even when the high frequency gain is unknown,and both the tracking performance and the control effort can be improved significantly. Furthermore,the strictly positive real (SPR) condition, which is an essential assumption of the earlier design, can be removed.