A track/hold (T/H) circuit of broad bandwidth high speed pipeline structure ADC based on the super frequency application is designed in the paper. Some main factors affecting SNR of high speed ADC, such as aperture ...A track/hold (T/H) circuit of broad bandwidth high speed pipeline structure ADC based on the super frequency application is designed in the paper. Some main factors affecting SNR of high speed ADC, such as aperture uncertainty, switch capacitor, and MOS switch, are analyzed. In the circuit, the full-differential structure and the bottom plate sampling technique are adopted to optimize the switch capacitors and MOS switches. The result based on the Spectre simulation on 0.35pm Bi- CMOS technology indicate that the aperture uncertainty, charge-injection, and non-linearity of clock feed-through are considerably restrained and the performance of T/H circuit is enhanced展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The tr...The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.展开更多
Design of a high performance track and hold (T/H) circuit for high-resolution high-speed analog-to-digital converter (ADC) is presented, which has been implemented in 0.18 μm CMOS process. An improved bootstrappe...Design of a high performance track and hold (T/H) circuit for high-resolution high-speed analog-to-digital converter (ADC) is presented, which has been implemented in 0.18 μm CMOS process. An improved bootstrapped and bulk-switching technique is introduced to greatly minimize the nonlinearity of sampling network over a wide bandwidth, and the addition of a modified pre-charge circuit helps reducing the total power consumption. The experimental results show that the proposed T/H circuit achieves over 77 dB SFDR (spurious-free dynamic range) and 70 dB THD (total harmonic distortion) at 100 MHz sampling rate and maintains the performance with input frequency up to 305 MHz while consuming 47 mW power.展开更多
Tow different computer calculation methods for distortion of the wide-band diode bridge track and hold amplifier (THA) are presented based on a high frequency Schottky diode model. One of the computer programs calcula...Tow different computer calculation methods for distortion of the wide-band diode bridge track and hold amplifier (THA) are presented based on a high frequency Schottky diode model. One of the computer programs calculates the distortion of weekly nonlinear THA based on the KCL and the nonlinear-current method. The other calculates the weekly nonlinear distortion by using a Volterra series method and a nodal formulation. Comparative calculation results for the diode bridge THA have shown good agreement with these two computer program calculation methods, whereas the overall computational efficiency of the nonlinear-current method is better than that of the nodal formulation method in a special evaluation.展开更多
Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to exp...Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.展开更多
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ...The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.展开更多
In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both ...In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.展开更多
Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of ...Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator fa...The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.展开更多
Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design ...Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
文摘A track/hold (T/H) circuit of broad bandwidth high speed pipeline structure ADC based on the super frequency application is designed in the paper. Some main factors affecting SNR of high speed ADC, such as aperture uncertainty, switch capacitor, and MOS switch, are analyzed. In the circuit, the full-differential structure and the bottom plate sampling technique are adopted to optimize the switch capacitors and MOS switches. The result based on the Spectre simulation on 0.35pm Bi- CMOS technology indicate that the aperture uncertainty, charge-injection, and non-linearity of clock feed-through are considerably restrained and the performance of T/H circuit is enhanced
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
基金Project(61171133) supported by the National Natural Science Foundation of ChinaProject(11JJ1010) supported by the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China
文摘The joint optimization of detection threshold and waveform parameters for target tracking which comes from the idea of cognitive radar is investigated for the modified probabilistic data association(MPDA)filter.The transmitted waveforms and detection threshold are adaptively selected to enhance the tracking performance.The modified Riccati equation is adopted to predict the error covariance which is used as the criterion function,while the optimization problem is solved through the genetic algorithm(GA).The detection probability,false alarm probability and measurement noise covariance are all considered together,which significantly improves the tracking performance of the joint detection and tracking system.Simulation results show that the proposed adaptive waveform-detection threshold joint optimization method outperforms the adaptive threshold method and the fixed parameters method,which will reduce the tracking error.The average reduction of range error between the adaptive joint method and the fixed parameters method is about 0.6 m,while that between the adaptive joint method and the adaptive threshold only method is about 0.3 m.Similar error reduction occurs for the velocity error and acceleration error.
文摘Design of a high performance track and hold (T/H) circuit for high-resolution high-speed analog-to-digital converter (ADC) is presented, which has been implemented in 0.18 μm CMOS process. An improved bootstrapped and bulk-switching technique is introduced to greatly minimize the nonlinearity of sampling network over a wide bandwidth, and the addition of a modified pre-charge circuit helps reducing the total power consumption. The experimental results show that the proposed T/H circuit achieves over 77 dB SFDR (spurious-free dynamic range) and 70 dB THD (total harmonic distortion) at 100 MHz sampling rate and maintains the performance with input frequency up to 305 MHz while consuming 47 mW power.
文摘Tow different computer calculation methods for distortion of the wide-band diode bridge track and hold amplifier (THA) are presented based on a high frequency Schottky diode model. One of the computer programs calculates the distortion of weekly nonlinear THA based on the KCL and the nonlinear-current method. The other calculates the weekly nonlinear distortion by using a Volterra series method and a nodal formulation. Comparative calculation results for the diode bridge THA have shown good agreement with these two computer program calculation methods, whereas the overall computational efficiency of the nonlinear-current method is better than that of the nodal formulation method in a special evaluation.
文摘Purpose-The main objective of the present research is to investigate the benefits of using geogrid reinforcement in minimizing the rate of deterioration of ballasted rail track geometry resting on soft clay and to explore the effect of load amplitude,load frequency,presence of geogrid layer in ballast layer and ballast layer thickness on the behavior of track system.These variables are studied both experimentally and numerically.This paper examines the effect of geogrid reinforced ballast laying on a layer of clayey soil as a subgrade layer,where a half full scale railway tests are conducted as well as a theoretical analysis is performed.Design/methodologylapproach-The experimental tests work consists of laboratory model tests to investigate the reduction in the compressibility and stress distribution induced in soft clay under a ballast railway reinforced by geogrid reinforcement subjected to dynamic load.Experimental model based on an approximate half scale for general rail track engineering practice is adopted in this study which is used in Iraqi railways.The investigated parameters are load amplitude,load frequency and presence of geogrid reinforcement layer.A half fuli-scale railway was constructed for carrying out the tests,which consists of two rails 800 mm in iength with three w00den sleepers(900 mm×90 mm×90 mm).The ballast was overlying 500 mm thick clay layer.The tests were carried out with and without geogrid reinforcement,the tests were carried out in a well tied steel box of 1.5 m length X 1 m width X 1 m height.A series of laboratory tests were conducted to investigate the response of the ballast and the clay layers where the ballast was reinforced by a geogrid.Settlement in ballast and clay,was measured in reinforced and unreinforced ballast cases.In addition to the laboratory tests,the application of numerical analysis was made by using the finite element program PLAXIS 3D 2013.Findings-It was concluded that the settlement increased with increasing the simulated train load amplitude,there is a sharp increase in settlement up to the cycle 500 and after that,there is a gradual increase to level out between,2,500 and 4,500 cycles depending on the load frequency.There is a little increase in the induced settlement when the load amplitude increased from 0.5 to i ton,but it is higher when the load amplitude increased to 2 ton,the increase in settlement depends on the geogrid existence and the other studied parameters.Both experimental and numerical results showed the same behavior.The effect of load frequency on the settlement ratio is almost constant after 500 cycles.In general,for reinforced cases,the effect of load frequency on the settlement ratio is very small ranging between 0.5 and 2%compared with the unreinforcedcase.Originalitylvalue-Increasing the ballast layer thickness from 20 cm to 30 cm leads to decrease the settlement by about 50%.This ascertains the efficiency of ballast in spreading the waves induced by the track.
基金supported in part by the National Natural Science Foundation of China (62103093)the National Key Research and Development Program of China (2022YFB3305905)+6 种基金the Xingliao Talent Program of Liaoning Province of China (XLYC2203130)the Fundamental Research Funds for the Central Universities of China (N2108003)the Natural Science Foundation of Liaoning Province (2023-MS-087)the BNU Talent Seed Fund,UIC Start-Up Fund (R72021115)the Guangdong Key Laboratory of AI and MM Data Processing (2020KSYS007)the Guangdong Provincial Key Laboratory IRADS for Data Science (2022B1212010006)the Guangdong Higher Education Upgrading Plan 2021–2025 of “Rushing to the Top,Making Up Shortcomings and Strengthening Special Features” with UIC Research,China (R0400001-22,R0400025-21)。
文摘The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings.
基金supported by the National Natural Science Foundation of China(62075042 and 62205060)the Research Fund of Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(2020B1212030010)+1 种基金Fund for Research on National Major Research Instruments of China(Grant No.62027824)Fund for Science and Technology Innovation Cultivation of Guangdong University Students(No.pdjh2022b0543).
文摘In-vivo flow cytometry is a noninvasive real-time diagnostic technique that facilitates continuous monitoring of cells without perturbing their natural biological environment,which renders it a valuable tool for both scientific research and clinical applications.However,the conventional approach for improving classification accuracy often involves labeling cells with fluorescence,which can lead to potential phototoxicity.This study proposes a label-free in-vivo flow cytometry technique,called dynamic YOLOv4(D-YOLOv4),which improves classification accuracy by integrating absorption intensity fluctuation modulation(AIFM)into YOLOv4 to demodulate the temporal features of moving red blood cells(RBCs)and platelets.Using zebrafish as an experimental model,the D-YOLOv4 method achieved average precisions(APs)of 0.90 for RBCs and 0.64 for thrombocytes(similar to platelets in mammals),resulting in an overall AP of 0.77.These scores notably surpass those attained by alternative network models,thereby demonstrating that the combination of physical models with neural networks provides an innovative approach toward developing label-free in-vivoflow cytometry,which holds promise for diverse in-vivo cell classification applications.
基金supported in part by National Natural Science Foundation of China(No.62176041)in part by Excellent Science and Technique Talent Foundation of Dalian(No.2022RY21).
文摘Significant advancements have beenwitnessed in visual tracking applications leveragingViT in recent years,mainly due to the formidablemodeling capabilities of Vision Transformer(ViT).However,the strong performance of such trackers heavily relies on ViT models pretrained for long periods,limitingmore flexible model designs for tracking tasks.To address this issue,we propose an efficient unsupervised ViT pretraining method for the tracking task based on masked autoencoders,called TrackMAE.During pretraining,we employ two shared-parameter ViTs,serving as the appearance encoder and motion encoder,respectively.The appearance encoder encodes randomly masked image data,while the motion encoder encodes randomly masked pairs of video frames.Subsequently,an appearance decoder and a motion decoder separately reconstruct the original image data and video frame data at the pixel level.In this way,ViT learns to understand both the appearance of images and the motion between video frames simultaneously.Experimental results demonstrate that ViT-Base and ViT-Large models,pretrained with TrackMAE and combined with a simple tracking head,achieve state-of-the-art(SOTA)performance without additional design.Moreover,compared to the currently popular MAE pretraining methods,TrackMAE consumes only 1/5 of the training time,which will facilitate the customization of diverse models for tracking.For instance,we additionally customize a lightweight ViT-XS,which achieves SOTA efficient tracking performance.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金partially supported by the National Natural Science Foundation of China(62322307)Sichuan Science and Technology Program,China(2023NSFSC1968).
文摘The paper investigates the practical prescribed-time fuzzy tracking control problem for a category of nonlinear system subject to time-varying actuator faults.The presence of unknown nonlinear dynamics and actuator faults makes achieving tracking control within a prescribed-time challenging.To tackle this issue,we propose a novel practical prescribed-time fuzzy tracking control strategy,which is independent of the initial state of the system and does not rely on precise modeling of the system and actuators.We apply the approximation capabilities of fuzzy logic systems to handle the unknown nonlinear functions and unidentified actuator faults in the system.The piecewise controller and adaptive law constructed based on piecewise prescribed time-varying function and backstepping technique method establish the theoretical framework of practical prescribed-time tracking control,and extend the range of prescribed-time tracking control to infinity.Regardless of the initial conditions,the proposed control strategy can guarantee that all signals remain uniformly bounded within the practical prescribed time in the presence of unknown nonlinear item and time-varying actuator faults.Simulation example is presented to demonstrate the effectiveness of the proposed control strategy.
基金the China National Funds for Distinguished Young Scholars(No.12025204)。
文摘Eliminating the effects of gravity and designing nonlinear energy sinks(NESs)that suppress vibration in the vertical direction is a challenging task with numerous damping requirements.In this paper,the dynamic design of a vertical track nonlinear energy sink(VTNES)with zero linear stiffness in the vertical direction is proposed and realized for the first time.The motion differential equations of the VTNES coupled with a linear oscillator(LO)are established.With the strong nonlinearity considered of the VTNES,the steady-state response of the system is analyzed with the harmonic balance method(HBM),and the accuracy of the HBM is verified numerically.On this basis,the VTNES prototype is manufactured,and its nonlinear stiffness is identified.The damping effect and dynamic characteristics of the VTNES are studied theoretically and experimentally.The results show that the VTNES has better damping effects when strong modulation responses(SMRs)occur.Moreover,even for small-amplitude vibration,the VTNES also has a good vibration suppression effect.To sum up,in order to suppress the vertical vibration,an NES is designed and developed,which can suppress the vertical vibration within certain ranges of the resonance frequency and the vibration intensity.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.