The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
"Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between ind..."Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between individuals, researchers have designed unique self-propelled particles to mimic the collective behavior of biological systems. This review focuses on recent theoretical and experimental advances in the study of self-propelled particle systems and their individual and collective behaviors. The potential applications of active particles in chemical, biological and environmental sensing and single particle imaging are discussed.展开更多
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金supported by the National Natural Science Foundation of China (21425519)the Tsinghua University Startup Fund
文摘"Active" components can be introduced into a passive system to completely change its physical behavior from its typical behavior at thermodynamic equilibrium. To reveal the interaction mechanisms between individuals, researchers have designed unique self-propelled particles to mimic the collective behavior of biological systems. This review focuses on recent theoretical and experimental advances in the study of self-propelled particle systems and their individual and collective behaviors. The potential applications of active particles in chemical, biological and environmental sensing and single particle imaging are discussed.