Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr...Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.展开更多
This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic comple...This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。展开更多
In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering base...In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.展开更多
The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication sys...The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.展开更多
Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynami...Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method.展开更多
Millimeter Wave(mmWave)communication has been widely acknowledged as an attractive solution to address high-speed transmission of massive data in 5G and beyond 5G systems due to the promising spectrum availability.How...Millimeter Wave(mmWave)communication has been widely acknowledged as an attractive solution to address high-speed transmission of massive data in 5G and beyond 5G systems due to the promising spectrum availability.However,mmWave signals are highly susceptible to blockage and may suffer from rapidly changing channels.Thus,directional/beam tracking becomes imperative yet essential for robust mmWave communications.To address this challenge,we propose a robust beam tracking scheme for mmWave Heterogeneous Networks(HetNets)with multi-connectivity.Different from most existing schemes,the proposed beam tracking scheme is effective for outage events.We first discuss theμWave-assisted beam tracking procedure with and without candidate beams,and then analyze the inherent correlation between mmWave link quality and the operating beamwidth and occlusion range to derive the optimal beamwidth.Theoretical and numerical results show that the proposed beam tracking scheme can improve the robustness of mmWave communications while guaranteeing the rate performance.展开更多
Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher da...Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.展开更多
To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated...To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated circuit(IC)causes SEE.In this study,we propose a fast multi-track location(FML)method based on deep learning to locate the position of each particle track with high speed and accuracy.FML can process a vast amount of data supplied by Hi’Beam-SEE online,revealing sensitive areas in real time.FML is a slot-based object-centric encoder-decoder structure in which each slot can learn the location information of each track in the image.To make the method more accurate for real data,we designed an algorithm to generate a simulated dataset with a distribution similar to that of the real data,which was then used to train the model.Extensive comparison experiments demonstrated that the FML method,which has the best performance on simulated datasets,has high accuracy on real datasets as well.In particular,FML can reach 238 fps and a standard error of 1.6237μm.This study discusses the design and performance of FML.展开更多
In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space divis...In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.展开更多
This paper proposes a new reconfigurable intelligent surface based three-dimensional beam tracking method to solve the beam tracking problems for the unmanned aerial vehicle with obstacles in communication channels.Th...This paper proposes a new reconfigurable intelligent surface based three-dimensional beam tracking method to solve the beam tracking problems for the unmanned aerial vehicle with obstacles in communication channels.The proposed beam tracking method can not only regulate the reconfigurable intelligent surfaces to achieve the beam tracking of the obstructed communications,but also optimize the transmission efficiency of the communication.Firstly,a reconfigurable intelligent surface is proposed,which can correlate the transmission signals by adjusting the phaseshift matrix.Meanwhile,a new communication channel is constructed according to the reconfigurable intelligent surface,which consists of two parts.The first one is the channel between the unmanned aerial vehicle and the reconfigurable intelligent surface,the other is the channel between the reconfigurable intelligent surface and the ground base station.Note that the transmission performance of the communications can be optimized by adjusting the phase shift of each uniform linear array on the reconfigurable intelligent surface.Then,a new beam tracking method for the unmanned aerial vehicle with obstructed communications is proposed on the basis of the reconfigurable intelligent surface.By proposing the mixed genetic algorithm,the estimation accuracy of the azimuth and elevation angles is improved to enhance the performance of the beam tracking.Finally,the simulations are provided to verify the effectiveness of the proposed three-dimensional beam tracking method with reconfigurable intelligent surface.展开更多
China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than ...China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 92267202in part by the Municipal Government of Quzhou under Grant 2023D027+2 种基金in part by the National Natural Science Foundation of China(NSFC)under Grant 62321001in part by the National Key Research and Development Program of China under Grant 2020YFA0711303in part by the Beijing Natural Science Foundation under Grant Z220004.
文摘Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications.
基金supported in part by the National Key Research and Development Program of China(2019YFB2204701)in part by the National Natural Science Foundation of China(61831006,62022023,and 62250610223)in part by the Big Data Computing Center at Southeast University for numerical calculation.
文摘This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。
文摘In this paper,a Millimeter wave(mmWave)beam tracking problem is studied in orthogonal time frequency space(OTFS)systems.Considering the nonlinearity of beamforming and the constraints of existing Kalman-filtering based beam tracking schemes,we propose a novel Cubature Kalman Filter(CKF)framework tracking the channel state information(CSI)to manage the challenge of highspeed channel variation in single-user moving scene for OTFS systems.Aiming for low complexity for mobile settings,this paper trains only one beam pair to track a path to maintain the reliable communication link in the analog beamforming architecture.Simulation results show that our proposed method has better tracking performance to improve the accuracy of the estimated beam angle compared with prior work.
基金supported by the National Key R&D Program of China(2020YFB1807204)Beijing Natural Science Foundation(L212003)。
文摘The millimeter wave(mm Wave)is a potential solution for high data rate communication due to its availability of large bandwidth.However,it is challenging to perform beam tracking in vehicular mm Wave communication systems due to high mobility and narrow beams.In this paper,an adaptive beam tracking algorithm is proposed to improve the network throughput performance while reducing the training signal overhead.In particular,based on the mobility prediction at base station(BS),a novel frame structure with dynamic bundled timeslot is designed.Moreover,an actor-critic reinforcement learning based algorithm is proposed to obtain the joint optimization of both beam width and the number of bundled timeslots,which makes the beam tracking adapt to the changing environment.Simulation results demonstrate that,compared with the traditional full scan and Kalman filter based beam tracking algorithms,our proposed algorithm can improve the time-averaged throughput by 11.34%and 24.86%respectively.With the newly designed frame structure,it also outperforms beam tracking with conventional frame structure,especially in scenarios with large range of vehicle speeds.
文摘Beamforming is significant for millimeter wave multi-user massive multi-input multi-output systems.In the meanwhile,the overhead cost of channel state information and beam training is considerable,especially in dynamic environments.To reduce the overhead cost,we propose a multi-user beam tracking algorithm using a distributed deep Q-learning method.With online learning of users’moving trajectories,the proposed algorithm learns to scan a beam subspace to maximize the average effective sum rate.Considering practical implementation,we model the continuous beam tracking problem as a non-Markov decision process and thus develop a simplified training scheme of deep Q-learning to reduce the training complexity.Furthermore,we propose a scalable state-action-reward design for scenarios with different users and antenna numbers.Simulation results verify the effectiveness of the designed method.
基金supported in part by the National Natural Science Foundation of China under Grant 62001071Macao Young Scholars Program under Grant AM2021018+2 种基金China Postdoctoral Science Foundation under Grant 2020M683291the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN201900617 and KJQN202200617The work of G. Feng was partly supported by the Fundamental Research Funds for the Central Universities under Grant ZYGX2020ZB044.
文摘Millimeter Wave(mmWave)communication has been widely acknowledged as an attractive solution to address high-speed transmission of massive data in 5G and beyond 5G systems due to the promising spectrum availability.However,mmWave signals are highly susceptible to blockage and may suffer from rapidly changing channels.Thus,directional/beam tracking becomes imperative yet essential for robust mmWave communications.To address this challenge,we propose a robust beam tracking scheme for mmWave Heterogeneous Networks(HetNets)with multi-connectivity.Different from most existing schemes,the proposed beam tracking scheme is effective for outage events.We first discuss theμWave-assisted beam tracking procedure with and without candidate beams,and then analyze the inherent correlation between mmWave link quality and the operating beamwidth and occlusion range to derive the optimal beamwidth.Theoretical and numerical results show that the proposed beam tracking scheme can improve the robustness of mmWave communications while guaranteeing the rate performance.
文摘Unmanned aerial vehicle(UAV)has been widely used in many fields and is arousing global attention.As the resolution of the equipped sensors in the UAV becomes higher and the tasks become more complicated,much higher data rate and longer communication range are required in the foreseeable future.As the millimeter-wave(mm Wave)band can provide more abundant frequency resources than the microwave band,much higher achievable rate can be guaranteed to support UAV services such as video surveillance,hotspot coverage,and emergency communications,etc.The flexible mm Wave beamforming can be used to overcome the high path loss caused by the long propagation distance.In this paper,we study three typical application scenarios for mm Wave-UAV communications,namely communication terminal,access point,and backbone link.We present several key enabling techniques for UAV communications,including beam tracking,multi-beam forming,joint Tx/Rx beam alignment,and full-duplex relay techniques.We show the coupling relation between mm Wave beamforming and UAV positioning for mm Wave-UAV communications.Lastly,we summarize the challenges and research directions of mm Wave-UAV communications in detail.
基金supported by the National Natural Science Foundation of China (Nos.U2032209,11975292,12222512)the National Key Research and Development Program of China (2021YFA1601300)+2 种基金the CAS“Light of West China”Programthe CAS Pioneer Hundred Talent Programthe Guangdong Major Project of Basic and Applied Basic Research (No.2020B0301030008)。
文摘To improve the efficiency and accuracy of single-event effect(SEE)research at the Heavy Ion Research Facility at Lanzhou,Hi’Beam-SEE must precisely localize the position at which each heavy ion hitting the integrated circuit(IC)causes SEE.In this study,we propose a fast multi-track location(FML)method based on deep learning to locate the position of each particle track with high speed and accuracy.FML can process a vast amount of data supplied by Hi’Beam-SEE online,revealing sensitive areas in real time.FML is a slot-based object-centric encoder-decoder structure in which each slot can learn the location information of each track in the image.To make the method more accurate for real data,we designed an algorithm to generate a simulated dataset with a distribution similar to that of the real data,which was then used to train the model.Extensive comparison experiments demonstrated that the FML method,which has the best performance on simulated datasets,has high accuracy on real datasets as well.In particular,FML can reach 238 fps and a standard error of 1.6237μm.This study discusses the design and performance of FML.
基金supported by the National Natural Science Foundation of China(61372069)and the"111"Project(B08038)
文摘In order to apply compressive sensing in wireless sensor network, inside the nodes cluster classified by the spatial correlation, we propose that a cluster head adopts free space optical communication with space division multiple access, and a sensor node uses a modulating retro-reflector for communication. Thus while a random sampling matrix is used to guide the establishment of links between head cluster and sensor nodes, the random linear projection is accomplished. To establish multiple links at the same time, an optical space division multiple access antenna is designed. It works in fixed beams switching mode and consists of optic lens with a large field of view(FOV), fiber array on the focal plane which is used to realize virtual channels segmentation, direction of arrival sensor, optical matrix switch and controller. Based on the angles of nodes' laser beams, by dynamically changing the route, optical matrix switch actualizes the multi-beam full duplex tracking receiving and transmission. Due to the structure of fiber array, there will be several fade zones both in the focal plane and in lens' FOV. In order to lower the impact of fade zones and harmonize multibeam, a fiber array adjustment is designed. By theoretical, simulated and experimental study, the antenna's qualitative feasibility is validated.
基金co-supported by the National Natural Science Foundation of China(Nos.61867005,61703411)。
文摘This paper proposes a new reconfigurable intelligent surface based three-dimensional beam tracking method to solve the beam tracking problems for the unmanned aerial vehicle with obstacles in communication channels.The proposed beam tracking method can not only regulate the reconfigurable intelligent surfaces to achieve the beam tracking of the obstructed communications,but also optimize the transmission efficiency of the communication.Firstly,a reconfigurable intelligent surface is proposed,which can correlate the transmission signals by adjusting the phaseshift matrix.Meanwhile,a new communication channel is constructed according to the reconfigurable intelligent surface,which consists of two parts.The first one is the channel between the unmanned aerial vehicle and the reconfigurable intelligent surface,the other is the channel between the reconfigurable intelligent surface and the ground base station.Note that the transmission performance of the communications can be optimized by adjusting the phase shift of each uniform linear array on the reconfigurable intelligent surface.Then,a new beam tracking method for the unmanned aerial vehicle with obstructed communications is proposed on the basis of the reconfigurable intelligent surface.By proposing the mixed genetic algorithm,the estimation accuracy of the azimuth and elevation angles is improved to enhance the performance of the beam tracking.Finally,the simulations are provided to verify the effectiveness of the proposed three-dimensional beam tracking method with reconfigurable intelligent surface.
基金supported by the National Natural Science Foundation of China (Grant No. 51608542)Project of Science and Technology Research and Development Program of China Railway Corporation (Grant No.2015G001-G)
文摘China railways track structure II (CRTS II) slab ballastless track on bridge is one kind of track structures unique to China. Its main bearing component of longitudinal force is the continuous base plate rather than rail. And the track-bridge interaction is weakened by the sliding layer installed between base plate and bridge deck. In order to study the dynamic response of CRTS II slab ballastless track on bridge under seismic action, a 3D nonlinear dynamic model for simply-supported bridges and CRTS II track was established, which considered structures such as steel rail, fasteners, track plate, mortar layer, base plate, sliding layer, bridge, consolidation, anchors, stoppers, etc. Then its force and deformation features under different intensities of seismic excitation were studied. As revealed, the seismic response of the system increases with the increase of seismic intensity. The peak stresses of rail, track plate and base plate all occur at the abutment or anchors. Both track plate and base plate are about to crack. Besides, the rapid relative displacement between base plate and bridge deck due to the small friction coefficient of sliding layer is beneficial to improve the seismic performance of the system. During the earthquake, a large vertical displacement appears in base plate which leads to frequent collisions between stoppers and base plate, as a result, stoppers may be damaged.