In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At f...In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.展开更多
The tracking characteristics of tracer particles for particle image velocimetry(PIV) measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunne...The tracking characteristics of tracer particles for particle image velocimetry(PIV) measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel(MMWT) of Shanghai Jiao Tong University.The motion of tracer particles carried by the supersonic flow across Shockwaves was theoretically modelled,and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated.According to the proposed selection criterion of tracer particles,the PIV measured results clearly identified that the Shockwave amplitude is in good agreement with theory and Schlieren visualizations.For the tracer particles in nanoscales,their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique Shockwaves.On the other hand,the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity.展开更多
The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to th...The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to the impeller rotation, as additional effects. This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid. Then based on the motion equation for particles in low Reynolds number centrifugal pumps, a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation. After that the deviations of the particle motion from the fluid motion, as predicted by the various approximations, are discussed and compared. At last, with an emphasis on the Particle Image Velocimetry (PIV) results, the tracking characteristics of particles are estimated. Also, advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.展开更多
Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operati...Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operational forecasting.Based on the tropical cyclone(TC)best-track dataset and TC precipitation data from 1960 to 2019,the spatiotemporal distribution of TCER affecting China is analyzed.Results show that there were large regional differences in the threshold for TCER in China,decreasing from the southeastern coast to the northwest inland.TCER occurred infrequently in northern China but had a high intensity and was highly localized.The frequency and intensity of TCER showed slightly increasing trends over time and was most likely to occur in August(41.0%).Most of the TC precipitation processes with extreme rainfall lasted for four to six days,with TCER mainly occurring on the third to fourth days.TCER with wide areas showed a northwestward prevailing track and a westward prevailing track.Strong TCs are not always accompanied by extreme precipitation while some weak TCs can lead to very extreme rainfall.A total of 64.7%(35.3%)of the TCER samples occurred when the TC was centered over the land(sea).TCER≥250 mm was located within 3°of the center of the TC.When the center of the TC was located over the sea(land),the extreme rainfall over land was most likely to appear on its northwestern(northeastern)side with a dispersed(concentrated)distribution.TCER has unique climatic characteristics relative to the TC precipitation.展开更多
Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- q...Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- quency tend to get together.There are well-defined periods of 12 and 30 years,revealed with the maximum entropy method (MEM),the latter of low-frequency oscillation being clearer.展开更多
Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel t...Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.展开更多
基金supported by the National Natural Science Foundation of China(11372073,11072061)。
文摘In this paper,the dynamic evolution for a dualarm space robot capturing a spacecraft is studied,the impact effect and the coordinated stabilization control problem for postimpact closed chain system are discussed.At first,the pre-impact dynamic equations of open chain dual-arm space robot are established by Lagrangian approach,and the dynamic equations of a spacecraft are obtained by Newton-Euler method.Based on the results,with the process of integral and simplify,the response of the dual-arm space robot impacted by the spacecraft is analyzed by momentum conservation law and force transfer law.The closed chain system is formed in the post-impact phase.Closed chain constraint equations are obtained by the constraints of closed-loop geometry and kinematics.With the closed chain constraint equations,the composite system dynamic equations are derived.Secondly,the recurrent fuzzy neural network control scheme is designed for calm motion of unstable closed chain system with uncertain system parameter.In order to overcome the effects of uncertain system inertial parameters,the recurrent fuzzy neural network is used to approximate the unknown part,the control method with H∞tracking characteristic.According to the Lyapunov theory,the global stability is demonstrated.Meanwhile,the weighted minimum-norm theory is introduced to distribute torques guarantee that cooperative operation between manipulators.At last,numerical examples simulate the response of the collision,and the efficiency of the control scheme is verified by the simulation results.
基金supported by the National Natural Science Foundation of China(Nos.11672183,91641129 and 91441205)
文摘The tracking characteristics of tracer particles for particle image velocimetry(PIV) measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel(MMWT) of Shanghai Jiao Tong University.The motion of tracer particles carried by the supersonic flow across Shockwaves was theoretically modelled,and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated.According to the proposed selection criterion of tracer particles,the PIV measured results clearly identified that the Shockwave amplitude is in good agreement with theory and Schlieren visualizations.For the tracer particles in nanoscales,their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique Shockwaves.On the other hand,the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity.
基金supported by the National Outstanding Young Scientist Funds of China (Grant No.50825902)the Jiangsu Provincial Innovative Scholars "Climbing" Project of China(Grant No.BK2009006)the National Natural Science Foundation of China (Grant No.50979034)
文摘The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to the impeller rotation, as additional effects. This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid. Then based on the motion equation for particles in low Reynolds number centrifugal pumps, a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation. After that the deviations of the particle motion from the fluid motion, as predicted by the various approximations, are discussed and compared. At last, with an emphasis on the Particle Image Velocimetry (PIV) results, the tracking characteristics of particles are estimated. Also, advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1510205)National Natural Science Foundation of China(Grant Nos.42175008,41775048 and 41930972)+2 种基金National Basic Research Program of China(Grant No.2015CB452804)the Open Grants of the State Key Laboratory of Severe Weather(Grant Nos.2021LASW-A12 and 2020LASWB06)Huafeng Meteorological Media Group Essential Research Project(Grant No.CY-J2020002)。
文摘Tropical cyclone extreme rainfall(TCER)causes devastating floods and severe damage in China and it is therefore important to determine its long-term climatological distribution for both disaster prevention and operational forecasting.Based on the tropical cyclone(TC)best-track dataset and TC precipitation data from 1960 to 2019,the spatiotemporal distribution of TCER affecting China is analyzed.Results show that there were large regional differences in the threshold for TCER in China,decreasing from the southeastern coast to the northwest inland.TCER occurred infrequently in northern China but had a high intensity and was highly localized.The frequency and intensity of TCER showed slightly increasing trends over time and was most likely to occur in August(41.0%).Most of the TC precipitation processes with extreme rainfall lasted for four to six days,with TCER mainly occurring on the third to fourth days.TCER with wide areas showed a northwestward prevailing track and a westward prevailing track.Strong TCs are not always accompanied by extreme precipitation while some weak TCs can lead to very extreme rainfall.A total of 64.7%(35.3%)of the TCER samples occurred when the TC was centered over the land(sea).TCER≥250 mm was located within 3°of the center of the TC.When the center of the TC was located over the sea(land),the extreme rainfall over land was most likely to appear on its northwestern(northeastern)side with a dispersed(concentrated)distribution.TCER has unique climatic characteristics relative to the TC precipitation.
文摘Typhoons with erratic movement are studied for their annual frequency of occurrence over the South China Sea and Northwest Pacific,based on 102 years of data (1884—1985).It discovers that the years with higher fre- quency tend to get together.There are well-defined periods of 12 and 30 years,revealed with the maximum entropy method (MEM),the latter of low-frequency oscillation being clearer.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51975275)the National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics),China(Grant No.HTL-A-20G02)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX200178).
文摘Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.