期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Modified Monte Carlo Model of Speckle Tracking of Shear Wave Induced by Acoustic Radiation Force for Acousto-Optic Elasticity Imaging 被引量:3
1
作者 李玉娇 黄伟骏 +3 位作者 马风超 王睿 陆明珠 万明习 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期54-57,共4页
A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The t... A modified Monte Carlo model of speckle tracking of shear wave propagation in scattering media is proposed. The established Monte Carlo model mainly concerns the variations of optical electric field and speckle. The two- dimensional intensity distribution and the time evolution of speckles in different probe locations are obtained. The fluctuation of speckle intensity tracks the acoustic-radiation-force shear wave propagation, and especially the reduction of speckle intensity implies attenuation of shear wave. Then, the shear wave velocity is estimated quantitatively on the basis of the time-to-peak algorithm and linear regression processing. The results reveal that a smaller sampling interval yields higher estimation precision and the shear wave velocity is estimated more efficiently by using speckle intensity difference than by using speckle contrast difference according to the estimation error. Hence, the shear wave velocity is estimated to be 2.25 m/s with relatively high accuracy for the estimation error reaches the minimum (0.071). 展开更多
关键词 of on IS for A Modified Monte Carlo Model of Speckle tracking of Shear Wave Induced by Acoustic radiation Force for Acousto-Optic Elasticity Imaging by in
下载PDF
Bernoulli particle flter with observer altitude for maritime radiation source tracking in the presence of measurement uncertainty
2
作者 Luo Xiaobo Fan Hongqi +1 位作者 Song Zhiyong Fu Qiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第6期1459-1470,共12页
For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frs... For maritime radiation source target tracking in particular electronic counter measures(ECM)environment,there exists two main problems which can deteriorate the tracking performance of traditional approaches.The frst problem is the poor observability of the radiation source.The second one is the measurement uncertainty which includes the uncertainty of the target appearing/disappearing and the detection uncertainty(false and missed detections).A novel approach is proposed in this paper for tracking maritime radiation source in the presence of measurement uncertainty.To solve the poor observability of maritime radiation source target,using the radiation source motion restriction,the observer altitude information is incorporated into the bearings-only tracking(BOT)method to obtain the unique target localization.Then the two uncertainties in the ECM environment are modeled by the random fnite set(RFS)theory and the Bernoulli fltering method with the observer altitude is adopted to solve the tracking problem of maritime radiation source in such context.Simulation experiments verify the validity of the proposed approach for tracking maritime radiation source,and also demonstrate the superiority of the method compared with the traditional integrated probabilistic data association(IPDA)method.The tracking performance under different conditions,particularly those involving different duration of radiation source opening and switching-off,indicates that the method to solve our problem is robust and effective. 展开更多
关键词 Bernoulli flter Maritime radiation source Measurement uncertainty Passive tracking Random fnite set
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部