期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Demagnetization Analysis and Velocity Tracking Control of In-wheel Motor
1
作者 Haihong Li Junjie Chen Zhiqi Liu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期1-11,共11页
The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for ... The error caused by irreversible demagnetization damages the accurate velocity tracking of an in-wheel motor in a mobile robot.A current feedforward vector control system based on ESO is proposed to compensate it for the demagnetization motor.A demagnetization mathematical model is established to describe a permanent magnet synchronous motor,which took the change of permanent magnet flux linkage parameters as a factor to count the demagnetization error in velocity tracking.The uncertain disturbance estimation model of the control system is built based on ESO,which eliminates the system error by the feedforward current compensation.It is compared with the vector control method in terms of control accuracy.The simulation results show that the current feedforward vector control method based on ESO reduces the velocity tracking error greatly in conditions of motor demagnetization less than 30%.It is effective to improve the operation accuracy of the mobile robot. 展开更多
关键词 mobile robot velocity tracking disturbance estimation vector control
下载PDF
DERIVATION AND INTEGRAL SLIDING MODE VARIABLE STRUCTURE CONTROL OF HYDRAULIC VELOCITY TRACKING SYSTEM 被引量:3
2
作者 WeiJianhua GuanCheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期224-227,共4页
The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a der... The velocity tracking control of a hydraulic servo system is studied. Sincethe dynamics of the system are highly nonlinear and have large extent of model uncertainties, suchas big changes in load and parameters, a derivation and integral sliding mode variable structurecontrol scheme (DI-SVSC) is proposed. An integral controller is introduced to avoid the assumptionthat the derivative of desired signal must be known in conventional sliding mode variable structurecontrol, a nonlinear derivation controller is used to weaken the chattering of system. The designmethod of switching function in integral sliding mode control, nonlinear derivation coefficient andcontrollers of DI-SVSC is presented respectively. Simulation shows that the control approach is ofnice robustness and improves velocity tracking accuracy considerably. 展开更多
关键词 Hydraulic servo system velocity tracking Integral variable structurecontrol Nonlinear derivation control
下载PDF
Adaptive Angular Velocity Tracking Control of Spacecraft with Dynamic Uncertainties 被引量:2
3
作者 乔兵 刘振亚 +1 位作者 胡冰山 陈萌 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第1期85-90,共6页
The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adapt... The tracking of orientation and angular velocity is a primary attitude control task for an on-orbit spacecraft.The problem for a rigid spacecraft tracking a desired angular velocity profile is addressed using an adaptive feedback control.An angular velocity feedback tracking algorithm is firstly developed based on the precisely known attitude dynamics of the spacecraft,and the global tracking of the control algorithm is proved based on the Lyapunov analysis.An adaptation mechanism is then designed to deal with the dynamic uncertainties of the spacecraft.Such an adaptation mechanism enables the controller to track any desired angular velocity trajectories even in the presence of uncertain inertia parameters,although it does not guarantee the inertia tensor being precisely identified.To verify the effectiveness of the proposed adaptive control policy,computer simulations on dynamic equations of a spacecraft are conducted and their results are discussed. 展开更多
关键词 angular velocity tracking adaptive control inertia parameters attitude control SPACECRAFT
下载PDF
Simulation-based Optimal Design of α-β-γ-δ Filter 被引量:1
4
作者 Chun-Mu Wu Paul P. Lin +1 位作者 Zhen-Yu Han Shu-Rong Li 《International Journal of Automation and computing》 EI 2010年第2期247-253,共7页
The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend it... The existing third-order tracker known as α-β-γ-δ filter has been used for target tracking and predicting for years. The filter can track the target's position and velocity, but not the acceleration. To extend its capability, a new fourth-order target tracker called α-β-γ-δ filter is proposed. The main objective of this study was to find the optimal set of filter parameters that leads to minimum position tracking errors. The tracking errors between using the α-β-γ-δ filter and the α-β-γ-δ filter are compared. As a result, the new filter exhibits significant improvement in position tracking accuracy over the existing third-order filter, but at the expense of computational time in search of the optimal filter. To reduce the computational time, a simulation-based optimization technique via Taguchi method is introduced. 展开更多
关键词 Filter design simulation-based optimization Taguchi methods position tracking velocity tracking acceleration tracking.
下载PDF
DISTRIBUTED TRACKING CONTROL OF SECONDORDER MULTI-AGENT SYSTEMS UNDER MEASU-REMENT NOISES 被引量:5
5
作者 LIU Xueliang XU Bugong XIE Lihua 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2014年第5期853-865,共13页
This paper considers a leader-following tracking control problem for second-order multiagent systems(MASs) under measurement noises and directed communication channels.It is assumed that each follower-agent can measur... This paper considers a leader-following tracking control problem for second-order multiagent systems(MASs) under measurement noises and directed communication channels.It is assumed that each follower-agent can measure the relative positions and velocities of its neighbors in a noisy environment.Based on a novel velocity decomposition technique,a neighbor-based control law is designed to realize local control strategies for these continuous-time agents.It is shown that the proposed consensus protocol can guarantee that all the follower-agents track the active leader.In addition,this result is extended to a more general case with switching topologies.Finally,a numerical example is given for illustration. 展开更多
关键词 Multi-agent systems(MASs) stochastic systems tracking control velocity decomposition
原文传递
Fuzzy logic algorithm of hovering control for the quadrotor unmanned aerial system
6
作者 Lie Yu Jia Chen +2 位作者 Yukang Tian Yunzhou Sun Lei Ding 《International Journal of Intelligent Computing and Cybernetics》 EI 2017年第4期451-463,共13页
Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID con... Purpose–The purpose of this paper is to present a control strategy which uses two independent PID controllers to realize the hovering control for unmanned aerial systems(UASs).In addition,the aim of using two PID controller is to achieve the position control and velocity control simultaneously.Design/methodology/approach–The dynamic of the UASs is mathematically modeled.One PID controller is used for position tracking control,while the other is selected for the vertical component of velocity tracking control.Meanwhile,fuzzy logic algorithm is presented to use the actual horizontal component of velocity to compute the desired position.Findings–Based on this fuzzy logic algorithm,the control error of the horizontal component of velocity tracking control is narrowed gradually to be zero.The results show that the fuzzy logic algorithm can make the UASs hover still in the air and vertical to the ground.Social implications–The acquired results are based on simulation not experiment.Originality/value–This is the first study to use two independent PID controllers to realize stable hovering control for UAS.It is also the first to use the velocity of the UAS to calculate the desired position. 展开更多
关键词 Fuzzy logic algorithm Hovering control Position tracking control Unmanned aerial systems velocity tracking control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部