Endoscopic submucosal dissection(ESD)has been developed as a treatment for superficial gastrointestinal neoplasms,which can achieve en bloc resection regardless of the lesion size.However,ESD is technically difficult ...Endoscopic submucosal dissection(ESD)has been developed as a treatment for superficial gastrointestinal neoplasms,which can achieve en bloc resection regardless of the lesion size.However,ESD is technically difficult because endoscopists cannot bring their hand into the gastrointestinal tract,unlike surgeons in regular surgery.It is difficult to obtain sufficient tension in the dissection plane and a good field of vision.Therefore,ESD is associated with a long procedure time and a high risk of adverse events in comparison with endoscopic mucosal resection.Traction methods have been developed to provide sufficient tension for the dissection plane and a good field of vision during the ESD procedure.However,traction direction is limited in most traction methods,resulting in insufficient effect in some cases.Although traction direction is considered important,there have been few investigations of its effect.In the first half of this review,important traction methods are discussed,including traction direction.In second half,appropriate traction methods for each organ are considered.Other important considerations for traction method,such as ability to adjust traction strength,interference between traction device and endoscope,and the need for specialized devices are also discussed.展开更多
This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and e...This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the relative crack opening displacement(RCOD)was chosen as unknowns on either side of crack surfaces to keep the single-domain merit.Only one side of the crack surfaces was concerned and needed to be discretized,thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method(DBEM).A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.展开更多
This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accuratel...This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.展开更多
To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the ...To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.展开更多
文摘Endoscopic submucosal dissection(ESD)has been developed as a treatment for superficial gastrointestinal neoplasms,which can achieve en bloc resection regardless of the lesion size.However,ESD is technically difficult because endoscopists cannot bring their hand into the gastrointestinal tract,unlike surgeons in regular surgery.It is difficult to obtain sufficient tension in the dissection plane and a good field of vision.Therefore,ESD is associated with a long procedure time and a high risk of adverse events in comparison with endoscopic mucosal resection.Traction methods have been developed to provide sufficient tension for the dissection plane and a good field of vision during the ESD procedure.However,traction direction is limited in most traction methods,resulting in insufficient effect in some cases.Although traction direction is considered important,there have been few investigations of its effect.In the first half of this review,important traction methods are discussed,including traction direction.In second half,appropriate traction methods for each organ are considered.Other important considerations for traction method,such as ability to adjust traction strength,interference between traction device and endoscope,and the need for specialized devices are also discussed.
基金This work was supported by The National Key R&D Program of China(Grant No.2017YFC0804601)the National Natural Science Foundation of China(No.51741410)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z017017).
文摘This paper presents a direct traction boundary integral equation method(DTBIEM)for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the relative crack opening displacement(RCOD)was chosen as unknowns on either side of crack surfaces to keep the single-domain merit.Only one side of the crack surfaces was concerned and needed to be discretized,thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method(DBEM).A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.
基金supported by the National Natural Science Foundation of China under Grant 52107007the China Scholarship Council under Grant 202008120084the“Chunhui Plan”Collaborative Research Project of Chinese Ministry of Education under Grant HZKY20220604。
文摘This paper presents the design optimization of a self-circulated ventilation system for an enclosed permanent magnet(PM)traction motor utilized in the propulsion systems for subway trains.In order to analyze accurately the machine's inherent cooling capacity when the train is running,the ambient airflow and the related heat transfer coefficient(HTC)are numerically investigated considering synchronously the bogie installation structure.The machine is preliminary cooled with air ducts set on the motor shell,and the fluidic-thermal field distributions with only the shell air duct cooling are numerically calculated.During simulations,the HTC obtained in the former steps is applied to the external surface of the machine to model the inherent cooling characteristic caused by the train movement.To reduce the temperature rise and thus guarantee the motor's working reliability,an internal self-circulated air cooling system is proposed according to the machine temperature distribution.The air enclosed in the end-caps is driven by the blades mounted on both sides of the rotor core and forms two air circuits to bring the excessive power losses generated in the heating components to cool regions.The fluid flow and temperature rise distributions of the cooling system's structural parameters are further improved by the Taguchi method in order to confirm the efficacy of the internal air cooling system.
文摘To solve the problem of temperature rise caused by the high power density of high-speed permanent magnet synchronous traction motors,the temperature rise of various components in the motor is analyzed by coupling the equivalent thermal circuit method and computational fluid dynamics.Also,a cooling strategy is proposed to solve the problem of temperature rise,which is expected to prolong the service life of these devices.First,the theoretical bases of the approaches used to study heat transfer and fluid mechanics are discussed,then the fluid flow for the considered motor is analyzed,and the equivalent thermal circuit method is introduced for the calculation of the temperature rise.Finally,the stator,rotor loss,motor temperature rise,and the proposed cooling method are also explored through experiments.According to the results,the stator temperature at 50,000 r/min and 60,000 r/min at no-load operation is 68℃ and 76℃,respectively.By monitoring the temperature of the air outlets inside and outside the motor at different speeds,it is also found that the motor reaches a stable temperature rise after 65 min of operation.Coupling of the thermal circuit method and computational fluid dynamics is a strategy that can provide the average temperature rise of each component and can also comprehensively calculate the temperature of each local point.We conclude that a hybrid cooling strategy based on axial air cooling of the inner air duct of the motor and water cooling of the stator can meet the design requirements for the ventilation and cooling of this type of motors.