In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source I...In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.展开更多
This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,inducti...This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,induction motor,and synchronous motor,it is found that permanent magnet synchronous motor has better overall performance;by comparison with converters with Si-based IGBTs,it is found converters with SiC MOSFETs show significantly higher efficiency and increase driving mileage per charge.In addition,the pros and cons of different control strategies and algorithms are demonstrated.Next,by comparing series,parallel,and power split hybrid powertrains,the series-parallel compound hybrid powertrains are found to provide better fuel economy.Different electric powertrains,hybrid powertrains,and range-extended electric systems are also detailed,and their advantages and disadvantages are described.Finally,the technology roadmap over the next 15 years is proposed regarding traction motor,power electronic converter and electric powertrain as well as the key materials and components at each time frame.展开更多
基金supported in part by the National Natural Science Foundation of China(61503132)。
文摘In order to improve the heat dissipation capability of motor controller for new energy vehicles,the water cooled radiator with multiple channels is optimized in this paper.The heat conduction between the heat source IGBT and the radiator,the convective heat transfer between the radiator and the coolant,the mechanical strength and the manufacturing cost are comprehensively considered during the optimization process.The power loss and thermal resistance of the IGBT unit are calculated at first,and finite element model of the radiator is established.On this basis,multi-physics coupling analysis of the water cooled radiator is carried out.Secondly,the sensitivity analysis is applied to verify the influence of structural parameters on the heat dissipation performance of the radiator system.The influence of coolant inlet velocity v,number of cooling ribs n,height of radiator ribs H on the maximum temperature rise T,the temperature difference ΔT between phase U and W,and the coolant pressure lossΔP are analyzed in depth,and the optimal range of the structural parameters for heat dissipation is obtained.Finally,an experimental platform was set up to verify the performance of the proposed structure of water cooled radiator for motor controller of new energy vehicle.The results show that the heat dissipation capability of the proposed radiator is improved compared with the initial design.
文摘This paper presents a review on the recent research and technical progress of electric motor systems and electric powertrains for new energy vehicles.Through the analysis and comparison of direct current motor,induction motor,and synchronous motor,it is found that permanent magnet synchronous motor has better overall performance;by comparison with converters with Si-based IGBTs,it is found converters with SiC MOSFETs show significantly higher efficiency and increase driving mileage per charge.In addition,the pros and cons of different control strategies and algorithms are demonstrated.Next,by comparing series,parallel,and power split hybrid powertrains,the series-parallel compound hybrid powertrains are found to provide better fuel economy.Different electric powertrains,hybrid powertrains,and range-extended electric systems are also detailed,and their advantages and disadvantages are described.Finally,the technology roadmap over the next 15 years is proposed regarding traction motor,power electronic converter and electric powertrain as well as the key materials and components at each time frame.