Field an experiment was carried out in the farms of Agriculture and forestry academy at University in Nineveh. The research was conducted to investigate a practical study for the effect of four forward speeds (1.9, 2....Field an experiment was carried out in the farms of Agriculture and forestry academy at University in Nineveh. The research was conducted to investigate a practical study for the effect of four forward speeds (1.9, 2.6, 3.8 and 4.7 km/hr.) and three acceleration direction of axes lateral, longitudinal and vertical, and two types machines control (Mower and Rotovators) on the vibrations transferred to the steering wheel horticulture tractor type (Goldoni). The vibration points on the handgrip were calculated and tested. Root mean square acceleration (RMS), given in m/sec2, was calculated. Results showed increased acceleration vibration of the three directions (longitudinal, lateral and vertical) transferred to the steering wheel tractor by increased forward speed. The Mower score recorded the highest acceleration vibration for the three directions of Rotovators. The levels of vibration emitted from tractor to hand an operator during the experiment was high comparing with standard mechanical vibration. Handgrip vibration intensity in the vertical direction is bigger than the lateral and longitudinal direction. The total vibration evaluating was denoted as the square root mean of the three sum value (lateral, longitudinal and vertical) directions. The paper purpose was measuring and analyzing vibration level transferred to the steering wheel and reduces the machine vibration. This paper is helpful for design in order to increase the develop safety systems in easy and economical way.展开更多
Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonl...Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonlinear friction force is investigated. On the basis of the generalized dissipation Lagrange's equation, the dynamics equation of nonlinear torsional vibration system is deduced. The bifurcation and chaotic motion in the system subjected to an external harmonic excitation is studied by theoretical analysis and numerical simulation. The stability of unperturbed system is analyzed by using the stability theory of equilibrium positions of Hamiltonian systems. The criterion of existence of chaos phenomena under a periodic perturbation is given by means of Melnikov's method. It is shown that the existence of homoclinic and heteroclinic orbits in the unperturbed system implies chaos arising from breaking of homoclinic or heteroclinic orbits under perturbation. The validity of the result is checked numerically. Periodic doubling bifurcation route to chaos, quasi-periodic route to chaos, intermittency route to chaos are found to occur due to the amplitude varying in some range. The evolution of system dynamic responses is demonstrated in detail by Poincare maps and bifurcation diagrams when the system undergoes a sequence of periodic doubling or quasi-periodic bifurcations to chaos. The conclusion can provide reference for deeply researching the dynamic behavior of mechanical drive systems.展开更多
The 3D characteristic diagram of acoustically induced surface vibration was employed to study the influence of different buried landmines on the acoustic detection signal. By using the vehicular experimental system fo...The 3D characteristic diagram of acoustically induced surface vibration was employed to study the influence of different buried landmines on the acoustic detection signal. By using the vehicular experimental system for acoustic landmine detection and the method of scanning detection, the 3D characteristic diagrams of surface vibration were measured when different objects were buried underground, including big plastic landmine, small plastic landmine, big metal landmine and bricks. The results show that, under the given conditions, the surface vibration amplitudes of big plastic landmine, big metal landmine, small plastic landmine and bricks decrease in turn. The 3D characteristic diagrams of surface vibration can be used to further identify the locations of buried landmines.展开更多
An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medi...An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.展开更多
The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis...The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically.展开更多
The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velo...The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli’s classical beam theory(ECBT),Timoshenko’s first-order beam theory(TFBT),Reddy’s third-order shear deformation beam theory,and the simple sinusoidal shear deformation beam theory.Hamilton’s principle is utilized to give the equations of motion and then to describe the vibration of the current beam.Based on Navier’s approach,the solution of the dynamic system is obtained.The effects of the material properties,the modes,the thickness ratios,the lamination schemes,the magnitudes of the feedback coefficient,the position of magnetostrictive layers at the structure,and the foundation modules are extensively studied and discussed.展开更多
Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a hollow poroelastic closed spherical shell filled with fluid are studied. The frequency equation of axially symmetri...Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a hollow poroelastic closed spherical shell filled with fluid are studied. The frequency equation of axially symmetric vibrations for a pervious and an impervious surface is obtained. Free vibrations of a closed spherical shell are studied as a particular case when the fluid is vanished. Frequency as a function of ratio of thickness to inner radius is computed in absence of dissipation for two types of poroelastic materials each for a pervious and an impervious surface. Results of previous works are obtained as a particular case of the present study.展开更多
Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The ...Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.展开更多
In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an ...In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.展开更多
Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial diff...Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .展开更多
Parkinson’s disease (PD) is a neurodegenerative disease that occurs due to loss of nerve cells that produce dopamine in the brain, affecting approximately 4 million people worldwide. PD patients often feel an increas...Parkinson’s disease (PD) is a neurodegenerative disease that occurs due to loss of nerve cells that produce dopamine in the brain, affecting approximately 4 million people worldwide. PD patients often feel an increase in anxiety levels daily. While there are medications/exercises to help relieve anxiety, there are limited methods to reduce anxiety without the help of a caretaker. As a result, MEDIC Foundation, a non-profit organization in British Columbia, Canada, is designing an automated system that consists of a wristband and an application which uses vi-bration therapy to help reduce anxiety of PD patients. Literature reviews were conducted to document the project’s needs. Phase I of the project focused on de-veloping a prototype for the application and phase II on developing the wrist-band. The team developed prototypes of a wristband that automatically applies vibration near the median nerve as the heart rate variability (HRV) deviates away from the normal threshold of the user, and an application that displays real-time heart rate variability signals as well as provides for relaxation. The development of the prototype is still in early progress. By creating this automated system, we aim to provide a solution to senior PD patients to relieve anxiety independently. .展开更多
It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. No...It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.展开更多
In this paper, vibration analysis of irregular-closed-cell foam plates is per- formed. A cell volume distribution coefficient is introduced to modify the original Gibson- Ashby equations of effective Young's modulus ...In this paper, vibration analysis of irregular-closed-cell foam plates is per- formed. A cell volume distribution coefficient is introduced to modify the original Gibson- Ashby equations of effective Young's modulus of foam materials. A Burr distribution is imported to describe the cell volume distribution situation. Three Burr distribution pa- rameters are obtained and related to the cell volume range and the diversity. Based on the plate theory and the effective modulus theory, the natural frequency of foam plates is calculated with the change of the cell volume distribution parameters. The relationship between the frequencies and the cell volumes are derived. The scale factor of the average cell size is introduced and proved to be an important factor to the performance of the foam plate. The result is shown by the existing theory of size effects. It is determined that the cell volume distribution has an impact on the natural frequency of the plate structure based on the cell volume range, the diversity, and the average size, and the impact can lead to optimization of the synthesis procedure.展开更多
The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equa...The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.展开更多
This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining e...This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.展开更多
This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. ...This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. The numerical solution of this equation is obtained using the fourth order Runge-Kutta method (RKM). The comparison between both solutions reveals high consistency between them which confirms that, the accuracy of the obtained solution using aforementioned perturbation technique. The time history of the attained solution is represented through some plots to reveal the good effect of the different parameters of the considered system on the motion at any instant. The conditions of the stability of the attained solution are presented and discussed.展开更多
This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pas...This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pasternak foundation.This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations.The deformations and effective-mechanical properties of the reinforced structure were elicited from the first-order shear theory(FSDT)and rule of mixture,respectively.The main goal of this study is to show the effects of various design parameters such as boundary conditions,reinforcement distribution,foundation parameters,and aspect ratio on the free vibration characteristics of the structure.展开更多
文摘Field an experiment was carried out in the farms of Agriculture and forestry academy at University in Nineveh. The research was conducted to investigate a practical study for the effect of four forward speeds (1.9, 2.6, 3.8 and 4.7 km/hr.) and three acceleration direction of axes lateral, longitudinal and vertical, and two types machines control (Mower and Rotovators) on the vibrations transferred to the steering wheel horticulture tractor type (Goldoni). The vibration points on the handgrip were calculated and tested. Root mean square acceleration (RMS), given in m/sec2, was calculated. Results showed increased acceleration vibration of the three directions (longitudinal, lateral and vertical) transferred to the steering wheel tractor by increased forward speed. The Mower score recorded the highest acceleration vibration for the three directions of Rotovators. The levels of vibration emitted from tractor to hand an operator during the experiment was high comparing with standard mechanical vibration. Handgrip vibration intensity in the vertical direction is bigger than the lateral and longitudinal direction. The total vibration evaluating was denoted as the square root mean of the three sum value (lateral, longitudinal and vertical) directions. The paper purpose was measuring and analyzing vibration level transferred to the steering wheel and reduces the machine vibration. This paper is helpful for design in order to increase the develop safety systems in easy and economical way.
基金supported by National Key Technologies R&D Program of the 10th Five-year Plan of China (Grant No. ZZ02-13B-02-03-1)Hebei Provincial Natural Science Foundation of China (Grant No. F2008000882)Hebei Provincial Education Office Scientific Research Projects of China (Grant No. ZH2007102, 2007496)
文摘Torsional vibration generally causes serious instability and damage problems in many rotating machinery parts. The global dynamic characteristic of nonlinear torsional vibration system with nonlinear rigidity and nonlinear friction force is investigated. On the basis of the generalized dissipation Lagrange's equation, the dynamics equation of nonlinear torsional vibration system is deduced. The bifurcation and chaotic motion in the system subjected to an external harmonic excitation is studied by theoretical analysis and numerical simulation. The stability of unperturbed system is analyzed by using the stability theory of equilibrium positions of Hamiltonian systems. The criterion of existence of chaos phenomena under a periodic perturbation is given by means of Melnikov's method. It is shown that the existence of homoclinic and heteroclinic orbits in the unperturbed system implies chaos arising from breaking of homoclinic or heteroclinic orbits under perturbation. The validity of the result is checked numerically. Periodic doubling bifurcation route to chaos, quasi-periodic route to chaos, intermittency route to chaos are found to occur due to the amplitude varying in some range. The evolution of system dynamic responses is demonstrated in detail by Poincare maps and bifurcation diagrams when the system undergoes a sequence of periodic doubling or quasi-periodic bifurcations to chaos. The conclusion can provide reference for deeply researching the dynamic behavior of mechanical drive systems.
基金Supported by the National Natural Science Foundation of China(No.61575119)Science and Technology on Near-Surface Detection Laboratory(No.TCGZ2015A005)State Key Laboratory of Precision Measuring Technology and Instruments(PIL1402)
文摘The 3D characteristic diagram of acoustically induced surface vibration was employed to study the influence of different buried landmines on the acoustic detection signal. By using the vehicular experimental system for acoustic landmine detection and the method of scanning detection, the 3D characteristic diagrams of surface vibration were measured when different objects were buried underground, including big plastic landmine, small plastic landmine, big metal landmine and bricks. The results show that, under the given conditions, the surface vibration amplitudes of big plastic landmine, big metal landmine, small plastic landmine and bricks decrease in turn. The 3D characteristic diagrams of surface vibration can be used to further identify the locations of buried landmines.
基金Projects(50809009,51578100) supported by the National Natural Science Foundation of ChinaProjects(3132014326,3132015095) supported by the Fundamental Research Funds for the Central Universities of China
文摘An axisymmetrical analytical solution is developed to investigate the vertical time-harmonic vibration of a floating pile in a saturated viscoelastic soil layer overlaying bedrock. The soil is described by porous medium model established by Boer, while the pile is described by a beam vibration theory. By using separation theory of differential operator and variables to solve the dynamic governing equations for the soil, the fundamental solutions for the soil reactions on side and bottom of the pile are obtained. The dynamic impedance of the pile head is then derived by solving the vibration equation for the pile according to the compatibility condition between the pile and the soil. The proposed model is validated by comparing special cases of our model with the existing results. Numerical examples are presented to analyze the vibration characteristics of the pile.
文摘The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically.
文摘The vibration suppression analysis of a simply-supported laminated composite beam with magnetostrictive layers resting on visco-Pasternak’s foundation is presented.The constant gain distributed controller of the velocity feedback is utilized for the purpose of vibration damping.The formulation of displacement field is proposed according to Euler-Bernoulli’s classical beam theory(ECBT),Timoshenko’s first-order beam theory(TFBT),Reddy’s third-order shear deformation beam theory,and the simple sinusoidal shear deformation beam theory.Hamilton’s principle is utilized to give the equations of motion and then to describe the vibration of the current beam.Based on Navier’s approach,the solution of the dynamic system is obtained.The effects of the material properties,the modes,the thickness ratios,the lamination schemes,the magnitudes of the feedback coefficient,the position of magnetostrictive layers at the structure,and the foundation modules are extensively studied and discussed.
文摘Employing Biot’s theory of wave propagation in liquid saturated porous media, waves propagating in a hollow poroelastic closed spherical shell filled with fluid are studied. The frequency equation of axially symmetric vibrations for a pervious and an impervious surface is obtained. Free vibrations of a closed spherical shell are studied as a particular case when the fluid is vanished. Frequency as a function of ratio of thickness to inner radius is computed in absence of dissipation for two types of poroelastic materials each for a pervious and an impervious surface. Results of previous works are obtained as a particular case of the present study.
文摘Towing tractor drivelines are lightly damped non-linear systems. Interactions between components can cause dynamic behavors such as gear gap impact in gear transmissions, shuffle and clonk phenomena in driveline. The torsional vibration of driveline has an important effect on grand engineering vehicle vibration and noise. Through analyzing torsional vibration equations of driveline, torsional vibration model of driveline is developed by using Matlab/Simulink software, Shuffle and clonk phenomena are observed in torsional vibration. The modeling method of analysizing driveline torsional vibration can be used to research and improve similar engineering vehicle driveline behavors.
文摘In order to understand the contribution of teeth vibration to the production of sibilant/s/, the pre-sent study was designed to develop a method of simultaneously measuring aeroacoustic sounds and the vibration of an obstacle. To measure the vibration without disturbing flow, the Michelson interferometer was employed. The flow channel, which had an obstacle wall inside of it, was fabricated such that it morphologically mimicked the simplified geometry of the oral cavity. Given airflows at a flow rate of 7.5 × 10–4 m3/s from the inlet, aeroacoustic sounds were generated. A spectrum analy-sis of the data demonstrated two prominent peaks in the sound at 1,300 and 3,500 Hz and one peak in the wall vibration at 3,500 Hz. The correlation in peak frequencies between the sound and wall vibration suggests that the sound at 3,500 Hz was induced by the wall vibration. In fact, the sound amplitude at 3,500 Hz decreased when the obstacle wall was thickened, which increased its rigidity (p < 0.05, t-test). The experimental results demonstrate that the developed techniques are capable of measuring aeroacoustic sound and obstacle wall vibration simultaneously, and suggest the potential to pave the way for detailed analysis of the production of sibilant sounds /s/.
文摘Based on the large deflection dynamic equations of axisymmetric shallow shells of revolution, the nonlinear forced vibration of a corrugated shallow shell under uniform load is investigated. The nonlinear partial differential equations of shallow shell are reduced to the nonlinear integral-differential equations by the method of Green's function. To solve the integral-differential equations, expansion method is used to obtain Green's function. Then the integral-differential equations are reduced to the form with degenerate core by expanding Green's function as series of characteristic function. Therefore, the integral-differential equations become nonlinear ordinary differential equations with regard to time. The amplitude-frequency response under harmonic force is obtained by considering single mode vibration. As a numerical example, forced vibration phenomena of shallow spherical shells with sinusoidal corrugation are studied. The obtained solutions are available for reference to design of corrugated shells .
文摘Parkinson’s disease (PD) is a neurodegenerative disease that occurs due to loss of nerve cells that produce dopamine in the brain, affecting approximately 4 million people worldwide. PD patients often feel an increase in anxiety levels daily. While there are medications/exercises to help relieve anxiety, there are limited methods to reduce anxiety without the help of a caretaker. As a result, MEDIC Foundation, a non-profit organization in British Columbia, Canada, is designing an automated system that consists of a wristband and an application which uses vi-bration therapy to help reduce anxiety of PD patients. Literature reviews were conducted to document the project’s needs. Phase I of the project focused on de-veloping a prototype for the application and phase II on developing the wrist-band. The team developed prototypes of a wristband that automatically applies vibration near the median nerve as the heart rate variability (HRV) deviates away from the normal threshold of the user, and an application that displays real-time heart rate variability signals as well as provides for relaxation. The development of the prototype is still in early progress. By creating this automated system, we aim to provide a solution to senior PD patients to relieve anxiety independently. .
基金supported by the National Natural Science Foundation of China(Grant No.61205108)the High Performance Computing(HPC)Foundation of National University of Defense Technology,China
文摘It is widely believed that Shor's factoring algorithm provides a driving force to boost the quantum computing research.However, a serious obstacle to its binary implementation is the large number of quantum gates. Non-binary quantum computing is an efficient way to reduce the required number of elemental gates. Here, we propose optimization schemes for Shor's algorithm implementation and take a ternary version for factorizing 21 as an example. The optimized factorization is achieved by a two-qutrit quantum circuit, which consists of only two single qutrit gates and one ternary controlled-NOT gate. This two-qutrit quantum circuit is then encoded into the nine lower vibrational states of an ion trapped in a weakly anharmonic potential. Optimal control theory(OCT) is employed to derive the manipulation electric field for transferring the encoded states. The ternary Shor's algorithm can be implemented in one single step. Numerical simulation results show that the accuracy of the state transformations is about 0.9919.
基金Project supported by the National Natural Science Foundation of China(No.90916007)
文摘In this paper, vibration analysis of irregular-closed-cell foam plates is per- formed. A cell volume distribution coefficient is introduced to modify the original Gibson- Ashby equations of effective Young's modulus of foam materials. A Burr distribution is imported to describe the cell volume distribution situation. Three Burr distribution pa- rameters are obtained and related to the cell volume range and the diversity. Based on the plate theory and the effective modulus theory, the natural frequency of foam plates is calculated with the change of the cell volume distribution parameters. The relationship between the frequencies and the cell volumes are derived. The scale factor of the average cell size is introduced and proved to be an important factor to the performance of the foam plate. The result is shown by the existing theory of size effects. It is determined that the cell volume distribution has an impact on the natural frequency of the plate structure based on the cell volume range, the diversity, and the average size, and the impact can lead to optimization of the synthesis procedure.
文摘The quasi-Green's function method is used to solve the free vibration problem of clamped thin plates on the Winkler foundation. Quasi-Green's function is established by the fundamental solution and the boundary equation of the problem. The function satisfies the homogeneous boundary condition of tile problem. The mode-shape differential equation of the free vibration problem of clamped thin plates on the Winkler foundation is reduced to the Fredholm integral equation of the second kind by Green's formula. The irregularity of the kernel of the integral equation is overcome by choosing a suitable form of the normalized boundary equation. The numerical results show the high accuracy of the proposed method.
文摘This paper presents an experimental investigation focused on identifying the effects of cutting conditions and tool construction on the surface roughness and natural frequency in turning of AISI1045 steel. Machining experiments were carried out at the lathe using carbide cutting insert coated with TiC and two forms of cutting tools made of AISI 5140 steel. Three levels for spindle speed, depth of cut, feed rate and tool overhang were chosen as cutting variables. The Taguchi method L9 orthogonal array was applied to design of experiment. By the help of signal-to-noise ratio and analysis of variance, it was concluded that spindle speed has the significant effect on the surface roughness, while tool overhang is the dominant factor affecting natural frequency for both cutting tools. In addition, the optimum cutting conditions for surface roughness and natural frequency were found at different levels. Finally, confirmation experiments were conducted to verify the effectiveness and efficiency of the Taguchi method in optimizing the cutting parameters for surface roughness and natural frequency.
文摘This paper outlines the vibrational motion of a nonlinear system with a spring of linear stiffness. Homotopy perturbation technique (HPT) is used to obtain the asymptotic solution of the governing equation of motion. The numerical solution of this equation is obtained using the fourth order Runge-Kutta method (RKM). The comparison between both solutions reveals high consistency between them which confirms that, the accuracy of the obtained solution using aforementioned perturbation technique. The time history of the attained solution is represented through some plots to reveal the good effect of the different parameters of the considered system on the motion at any instant. The conditions of the stability of the attained solution are presented and discussed.
基金This work was financially supported by the University of Kashan(Grant Number:574613/026).
文摘This study focuses on vibration analysis of cylindrical pressure vessels constructed by functionally graded carbon nanotube reinforced composites(FG-CNTRC).The vessel is under internal pressure and surrounded by a Pasternak foundation.This investigation was founded based on two-dimensional elastic analysis and used Hamilton’s principle to drive the governing equations.The deformations and effective-mechanical properties of the reinforced structure were elicited from the first-order shear theory(FSDT)and rule of mixture,respectively.The main goal of this study is to show the effects of various design parameters such as boundary conditions,reinforcement distribution,foundation parameters,and aspect ratio on the free vibration characteristics of the structure.