Investigations were conducted to purify crude Li_(2)CO_(3)via direct carbonation with CO_(2)at atmospheric pressure and pyrolysis with both water bath heating method and microwave heating method.The reaction kinetics ...Investigations were conducted to purify crude Li_(2)CO_(3)via direct carbonation with CO_(2)at atmospheric pressure and pyrolysis with both water bath heating method and microwave heating method.The reaction kinetics of LiHCO_(3)pyrolysis was studied and the effect of different operating conditions including initial concentration of LiHCO_(3)solution,pyrolysis temperature and stirring speed on the purity of Li_(2)CO_(3)was investigated to obtain the optimal operating conditions.Results showed that the effect law is similar in the two pyrolysis processes.The purity of the Li_(2)CO_(3)increases firstly and then decreases with the increase of the initial concentration of LiHCO_(3)solution and the stirring speed,while the purity of Li_(2)CO_(3)first decreases and then increases with the increase of pyrolysis temperature.The product yield increases with the increase of initial concentration of LiHCO_(3)solution and pyrolysis temperature and is essentially unaffected by the stirring speed.Under the optimal operating conditions,the purity of Li_(2)CO_(3)can reach up to 99.86%and 99.81%in water bath heating and microwave heating process,respectively.In addition,the pyrolysis rate of microwave assisted pyrolysis is 6 times that of water bath heating process,indicating that the microwave heating technology can significantly improve pyrolysis efficiency and reduce energy consumption.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U1607114,21878009,21725601)。
文摘Investigations were conducted to purify crude Li_(2)CO_(3)via direct carbonation with CO_(2)at atmospheric pressure and pyrolysis with both water bath heating method and microwave heating method.The reaction kinetics of LiHCO_(3)pyrolysis was studied and the effect of different operating conditions including initial concentration of LiHCO_(3)solution,pyrolysis temperature and stirring speed on the purity of Li_(2)CO_(3)was investigated to obtain the optimal operating conditions.Results showed that the effect law is similar in the two pyrolysis processes.The purity of the Li_(2)CO_(3)increases firstly and then decreases with the increase of the initial concentration of LiHCO_(3)solution and the stirring speed,while the purity of Li_(2)CO_(3)first decreases and then increases with the increase of pyrolysis temperature.The product yield increases with the increase of initial concentration of LiHCO_(3)solution and pyrolysis temperature and is essentially unaffected by the stirring speed.Under the optimal operating conditions,the purity of Li_(2)CO_(3)can reach up to 99.86%and 99.81%in water bath heating and microwave heating process,respectively.In addition,the pyrolysis rate of microwave assisted pyrolysis is 6 times that of water bath heating process,indicating that the microwave heating technology can significantly improve pyrolysis efficiency and reduce energy consumption.