期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Optimal Routing with Spatial-Temporal Dependencies for Traffic Flow Control in Intelligent Transportation Systems
1
作者 R.B.Sarooraj S.Prayla Shyry 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2071-2084,共14页
In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the ch... In Intelligent Transportation Systems(ITS),controlling the trafficflow of a region in a city is the major challenge.Particularly,allocation of the traffic-free route to the taxi drivers during peak hours is one of the challenges to control the trafficflow.So,in this paper,the route between the taxi driver and pickup location or hotspot with the spatial-temporal dependencies is optimized.Initially,the hotspots in a region are clustered using the density-based spatial clustering of applications with noise(DBSCAN)algorithm tofind the hot spots at the peak hours in an urban area.Then,the optimal route is allocated to the taxi driver to pick up the customer in the hotspot.Before allocating the optimal route,each route between the taxi driver and the hot spot is mapped to the number of taxi drivers.Among the map function,the optimal map is selected using the rain opti-mization algorithm(ROA).If more than one map function is obtained as the opti-mal solution,the map between the route and the taxi driver who has done the least number of trips in the day is chosen as thefinal solution This optimal route selec-tion leads to control of the trafficflow at peak hours.Evaluation of the approach depicts that the proposed trafficflow control scheme reduces traveling time,wait-ing time,fuel consumption,and emission. 展开更多
关键词 Intelligent transportation system(ITS) DBScAN rain optimization algorithm(ROA) trafficflow control
下载PDF
Networking Controller Based Real Time Traffic Prediction in Clustered Vehicular Adhoc Networks
2
作者 T.S.Balaji S.Srinivasan 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期2189-2203,共15页
The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role... The vehicular ad hoc network(VANET)is an emerging network tech-nology that has gained popularity because to its low cost,flexibility,and seamless services.Software defined networking(SDN)technology plays a critical role in network administration in the future generation of VANET withfifth generation(5G)networks.Regardless of the benefits of VANET,energy economy and traffic control are significant architectural challenges.Accurate and real-time trafficflow prediction(TFP)becomes critical for managing traffic effectively in the VANET.SDN controllers are a critical issue in VANET,which has garnered much interest in recent years.With this objective,this study develops the SDNTFP-C technique,a revolutionary SDN controller-based real-time trafficflow forecasting technique for clustered VANETs.The proposed SDNTFP-C technique combines the SDN controller’s scalability,flexibility,and adaptability with deep learning(DL)mod-els.Additionally,a novel arithmetic optimization-based clustering technique(AOCA)is developed to cluster automobiles in a VANET.The TFP procedure is then performed using a hybrid convolutional neural network model with atten-tion-based bidirectional long short-term memory(HCNN-ABLSTM).To optimise the performance of the HCNN-ABLSTM model,the dingo optimization techni-que was used to tune the hyperparameters(DOA).The experimental results ana-lysis reveals that the suggested method outperforms other current techniques on a variety of evaluation metrics. 展开更多
关键词 VANET trafficflow prediction clustering metaheuristics SDN controller deep learning
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部