The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in ...The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.展开更多
A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is...A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.展开更多
The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street ligh...The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.展开更多
This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is appli...This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions,particularly rainfall.MADQN is based on deep Q-network(DQN),which is an integration of the traditional reinforcement learning(RL)and the newly emerging deep learning(DL)approaches.MADQN enables traffic light controllers to learn,exchange knowledge with neighboring agents,and select optimal joint actions in a collaborative manner.A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia.Investigation is also performed using a grid traffic network(GTN)to understand that the proposed scheme is effective in a traditional traffic network.Our proposed scheme is evaluated using two simulation tools,namely Matlab and Simulation of Urban Mobility(SUMO).Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30%in the simulations.展开更多
The use of fixed-time traffic lights for road traffic control has the disadvantage of low traffic efficiency. In order to optimize the vehicle traffic at the intersection, this paper proposes a design scheme of a real...The use of fixed-time traffic lights for road traffic control has the disadvantage of low traffic efficiency. In order to optimize the vehicle traffic at the intersection, this paper proposes a design scheme of a real-time control system for road intelligent traffic lights based on FPGA. The system adopts the polling control model, the vehicle detector detects the arrival rate of vehicles, and obtains the corresponding traffic light green time length according to the traffic rules and polling model theory. Using Altera<span><span><span>’</span></span></span><span><span><span>s Cyclone IV series EP4CE15E22C8 chip as the development platform, a specific design plan is given. The circuit mainly includes program-controlled amplifier module, AD acquisition module, cross-correlation calculation module, serial port transmission and Lab-VIEW module. The system can realize the intelligent adjustment of traffic lights. Different vehicle arrival rates are detected at different times, so that the corresponding traffic light configuration time length changes accordingly. This intelligent adjustment controls road traffic and makes the main and branch roads coordinate and cooperate, thereby improving the traffic efficiency of the intersection.</span></span></span>展开更多
Fuzzy control is an important branch of intelligent control, and this paper describes the application of fuzzy pattern study in intelligent control, begins with a brief overview introduction for development of intelli...Fuzzy control is an important branch of intelligent control, and this paper describes the application of fuzzy pattern study in intelligent control, begins with a brief overview introduction for development of intelligent control, and then describes the main components of the fuzzy model and its characteristics and fuzzy pattern control system.Fuzzy pattern applications in the intersection signal intelligent control showed fuzzy mode control can effectively reduce the single intersection average vehicle delay time, making the intersection more unobstructed to pass.展开更多
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ...The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.展开更多
文摘The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.
文摘A single intersection of two phases is selected as a model to put forward a new optimal time-planning scheme for traffic light based on the model of hybrid automata for single intersection. A method of optimization is proposed for hybrid systems, and the average queue length over all queues is used as an objective function to find an optimal switching scheme for traffic light. It is illustrated that traffic light control for single intersection is a typical hybrid system, and the optimal planning-time scheme can be obtained using the optimal hybrid systems control based on the two stages method.
文摘The paper covers analysis and investigation of lighting automation system in low-traffic long-roads. The main objective is to provide optimal solution between expensive safe design that utilizes continuous street lighting system at night for the entire road, or inexpensive design that sacrifices the safety, relying on using vehicles lighting, to eliminate the problem of high cost energy consumption during the night operation of the road. By taking into account both of these factors, smart lighting automation system is proposed using Pattern Recognition Technique applied on vehicle number-plates. In this proposal, the road is sectionalized into zones, and based on smart Pattern Recognition Technique, the control system of the road lighting illuminates only the zone that the vehicles pass through. Economic analysis is provided in this paper to support the value of using this design of lighting control system.
文摘This paper investigates the use of multi-agent deep Q-network(MADQN)to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning(MARL)approach.The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions,particularly rainfall.MADQN is based on deep Q-network(DQN),which is an integration of the traditional reinforcement learning(RL)and the newly emerging deep learning(DL)approaches.MADQN enables traffic light controllers to learn,exchange knowledge with neighboring agents,and select optimal joint actions in a collaborative manner.A case study based on a real traffic network is conducted as part of a sustainable urban city project in the Sunway City of Kuala Lumpur in Malaysia.Investigation is also performed using a grid traffic network(GTN)to understand that the proposed scheme is effective in a traditional traffic network.Our proposed scheme is evaluated using two simulation tools,namely Matlab and Simulation of Urban Mobility(SUMO).Our proposed scheme has shown that the cumulative delay of vehicles can be reduced by up to 30%in the simulations.
文摘The use of fixed-time traffic lights for road traffic control has the disadvantage of low traffic efficiency. In order to optimize the vehicle traffic at the intersection, this paper proposes a design scheme of a real-time control system for road intelligent traffic lights based on FPGA. The system adopts the polling control model, the vehicle detector detects the arrival rate of vehicles, and obtains the corresponding traffic light green time length according to the traffic rules and polling model theory. Using Altera<span><span><span>’</span></span></span><span><span><span>s Cyclone IV series EP4CE15E22C8 chip as the development platform, a specific design plan is given. The circuit mainly includes program-controlled amplifier module, AD acquisition module, cross-correlation calculation module, serial port transmission and Lab-VIEW module. The system can realize the intelligent adjustment of traffic lights. Different vehicle arrival rates are detected at different times, so that the corresponding traffic light configuration time length changes accordingly. This intelligent adjustment controls road traffic and makes the main and branch roads coordinate and cooperate, thereby improving the traffic efficiency of the intersection.</span></span></span>
文摘Fuzzy control is an important branch of intelligent control, and this paper describes the application of fuzzy pattern study in intelligent control, begins with a brief overview introduction for development of intelligent control, and then describes the main components of the fuzzy model and its characteristics and fuzzy pattern control system.Fuzzy pattern applications in the intersection signal intelligent control showed fuzzy mode control can effectively reduce the single intersection average vehicle delay time, making the intersection more unobstructed to pass.
文摘The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations.