In modern motoring, many factors are considered to realize driving convenience and achieving safety at a reasonable cost. A drive towards effective management of traffic and parking space allocation in urban centres u...In modern motoring, many factors are considered to realize driving convenience and achieving safety at a reasonable cost. A drive towards effective management of traffic and parking space allocation in urban centres using intelligent software applications is currently being developed and deployed as GPS enabled service to consumers in automobiles or smartphone applications for convenience, safety and economic benefits. Building a fuzzy logic inference for such applications may have numerous approaches such as algorithms in Pascal or C-languages and of course using an effective fuzzy logic toolbox. Referring to a case report based on IrisNet project analysis, in this paper Matlab fuzzy logic toolbox is used in developing an inference for managing traffic flow and parking allocation with generalized feature that is open for modification. Being that modifications can be done within any or all among the tool’s universe of discourse, increment in the number of membership functions and changing input and output variables etc, the work here is limited within changes at input and output variables and bases of universe of discourse. The process implications is shown as plotted by the toolbox in surface and rule views, implying that the inference is flexibly open for modifications to suit area of application within reasonable time frame no matter how complex. The travel time to the parking space being an output variable in the current inference is recommended to be substituted with distance to parking space as the former is believed to affect driving habits among motorist, whom may require the inference to as well cover other important locations such as nearest or cheapest gas station, hotels, hospitals etc.展开更多
In this paper, a traffic signal control method based on fuzzy logic (FL), fuzzy-neuro (FN) and multi-objective genetic algorithms (MOGA) for an isolated four-approach intersection with through and left-turning movemen...In this paper, a traffic signal control method based on fuzzy logic (FL), fuzzy-neuro (FN) and multi-objective genetic algorithms (MOGA) for an isolated four-approach intersection with through and left-turning movements is presented. This method has an adaptive signal timing ability, and can make adjustments to signal timing in response to observed changes.The 'urgency degree' term, which can describe the different user's demand for green time is used in decision-making by which strategy of signal timing can be determined. Using a fuzzy logic controller, we can determine whether to extend or terminate the current signal phase and select the sequences of phases. In this paper, a method based on fuzzy-neuro can be used to predict traffic parameters used in fuzzy logic controller. The feasibility of using a multi-objective genetic algorithm ( MOGA) to find a group of optimizing sets of parameters for fuzzy logic controller depending on different objects is also demonstrated. Simulation results show that the proposed methed is effecfive to adjust the signal timing in response to changing traffic conditions on a real-time basis, and the controller can produce lower vehicle delays and percentage of stopped vehicles than a traffic-actuated controller.展开更多
文摘In modern motoring, many factors are considered to realize driving convenience and achieving safety at a reasonable cost. A drive towards effective management of traffic and parking space allocation in urban centres using intelligent software applications is currently being developed and deployed as GPS enabled service to consumers in automobiles or smartphone applications for convenience, safety and economic benefits. Building a fuzzy logic inference for such applications may have numerous approaches such as algorithms in Pascal or C-languages and of course using an effective fuzzy logic toolbox. Referring to a case report based on IrisNet project analysis, in this paper Matlab fuzzy logic toolbox is used in developing an inference for managing traffic flow and parking allocation with generalized feature that is open for modification. Being that modifications can be done within any or all among the tool’s universe of discourse, increment in the number of membership functions and changing input and output variables etc, the work here is limited within changes at input and output variables and bases of universe of discourse. The process implications is shown as plotted by the toolbox in surface and rule views, implying that the inference is flexibly open for modifications to suit area of application within reasonable time frame no matter how complex. The travel time to the parking space being an output variable in the current inference is recommended to be substituted with distance to parking space as the former is believed to affect driving habits among motorist, whom may require the inference to as well cover other important locations such as nearest or cheapest gas station, hotels, hospitals etc.
基金This project was supported by China Postdoctoral Science Foundation: "Research on Traffic Signal Control Method for Urban Intersection Based on Intelligent Techniques, 2001" .
文摘In this paper, a traffic signal control method based on fuzzy logic (FL), fuzzy-neuro (FN) and multi-objective genetic algorithms (MOGA) for an isolated four-approach intersection with through and left-turning movements is presented. This method has an adaptive signal timing ability, and can make adjustments to signal timing in response to observed changes.The 'urgency degree' term, which can describe the different user's demand for green time is used in decision-making by which strategy of signal timing can be determined. Using a fuzzy logic controller, we can determine whether to extend or terminate the current signal phase and select the sequences of phases. In this paper, a method based on fuzzy-neuro can be used to predict traffic parameters used in fuzzy logic controller. The feasibility of using a multi-objective genetic algorithm ( MOGA) to find a group of optimizing sets of parameters for fuzzy logic controller depending on different objects is also demonstrated. Simulation results show that the proposed methed is effecfive to adjust the signal timing in response to changing traffic conditions on a real-time basis, and the controller can produce lower vehicle delays and percentage of stopped vehicles than a traffic-actuated controller.