Theoretically, a system is anything that is made up of various parts. Theses parts are known as subsystems. At every point in time, these parts should work in harmony so that objectives could be achieved successfully....Theoretically, a system is anything that is made up of various parts. Theses parts are known as subsystems. At every point in time, these parts should work in harmony so that objectives could be achieved successfully. A system could be inanimate or animate item. Examples of inanimate systems include vehicles, households, computer and institution. Examples of animate systems are human being, animal and insect. Both inanimate and animate systems are made up of various subsystems. Such subsystems are required to co-operate, collaborate and work together so that set objectives could be achieved successfully. From practical managerial point of view, business organizations are equally systems that are made up of subsystems which may take the form of departments, sections and/or units. It is supposed to be collaborations among the managers and other members in these departments, sections and/or units so that organizational objectives could be achieved. All the managers in various departments, sections and/or units are required to work together as a team to make the system coherent and closely-knit to make disintegration impossible. Closely related to the systems approach to management is managerial decision-making. Decision-making is a very important function of every manager's job. The success and failure stories of many organizations are the result of the quality of decisions made. Many organizations have survived turbulent conditions. Others have also collapsed in spite of favourable conditions. These varying conditions are the result of the quality of decisions made by managers at positions of authority and responsibility. Therefore the systems approach to management enjoins top managers in particular to be very circumspect and cautious in certain decision-making activities. This is because, the quality of decision a manager makes can go a long way to determine the success or failure story of an organization as exemplified in the case study in this paper.展开更多
In modern workforce management,the demand for new ways to maximize worker satisfaction,productivity,and security levels is endless.Workforce movement data such as those source data from an access control system can su...In modern workforce management,the demand for new ways to maximize worker satisfaction,productivity,and security levels is endless.Workforce movement data such as those source data from an access control system can support this ongoing process with subsequent analysis.In this study,a solution to attaining this goal is proposed,based on the design and implementation of a data mart as part of a dimensional trajectory data warehouse(TDW)that acts as a repository for the management of movement data.A novel methodological approach is proposed for modeling multiple spatial and temporal dimensions in a logical model.The case study presented in this paper for modeling and analyzing workforce movement data is to support human resource management decision-making and the following discussion provides a representative example of the contribution of a TDW in the process of information management and decision support systems.The entire process of exporting,cleaning,consolidating,and transforming data is implemented to achieve an appropriate format for final import.Structured query language(SQL)queries demonstrate the convenience of dimensional design for data analysis,and valuable information can be extracted from the movements of employees on company premises to manage the workforce efficiently and effectively.Visual analytics through data visualization support the analysis and facilitate decisionmaking and business intelligence.展开更多
Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tac...Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.展开更多
The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years th...The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.展开更多
Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the opera...Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.展开更多
The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were sele...The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were selected to evaluate the impacts of ATM such as speed harmonization, shoulder utilization, and ramp metering. Test beds used in this study were at places where an ATM is either proposed or previously implemented, i.e., where data exists for condi- tions prior to and after the implementation of ATM. Data collected from the test beds were used in a simulation model to evaluate the impacts of each ATM strategy on speed, travel time, and crash rates. Simulation results indicated that the implementation of speed harmonization on US 90 showed a 14% reduction in crashes and a 2%-3% increase in freeway speed; the implementation of hard shoulders on US 90 showed a 39% increase in travel time, 22% increase in freeway capacity and 60% decrease in delays; and the implementation of ramp metering on US 59 between Bissonnet St. and Fondern road showed a decrease of 23 % in freeway travel time, a 14% increase in freeway speed and 11% decrease in accident rates.展开更多
The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy R...The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.展开更多
The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of estab...The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.展开更多
The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming incr...The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.展开更多
Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence t...Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.展开更多
The increasing need to manage natural resources sustainably, driven by population growth, requires the simultaneous use of Participatory Techniques (PT) and landscape planning for structured decision-making. We conduc...The increasing need to manage natural resources sustainably, driven by population growth, requires the simultaneous use of Participatory Techniques (PT) and landscape planning for structured decision-making. We conducted a bibliometric and systematic review to provide an overview of PT usage, identifying evolution in scientific production. We considered the number of publications and citations, prominent journals, and highly cited articles on scientific papers published in the Web of Science database between 1993 and 2023. A total of 415 articles related to PT were identified. After content evaluation, 19 critical articles were selected that underpin the growing combined use of models and indices with PT, enhancing the robustness and credibility of decision-making processes.展开更多
This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requi...This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.展开更多
The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents severa...The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.展开更多
This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media...This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.展开更多
This paper presents the design of traffic management mechanism in BUPT--IN system.Three function entities, SMF, SCF and SSF, cooperate to complete the traffic management function. The superiorities of this mechanism a...This paper presents the design of traffic management mechanism in BUPT--IN system.Three function entities, SMF, SCF and SSF, cooperate to complete the traffic management function. The superiorities of this mechanism and the trend of network management in iN (intelligent network) are also discussed.展开更多
Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesse...Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches.展开更多
Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large a...Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large amount of data,which makes privacy and security a major challenge to their success.The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors.This could have a negative impact on how well-liked CAVs are with the general public,give them a poor name at this early stage of their development,put obstacles in the way of their adoption and expanded use,and complicate the economic models for their future operations.On the other hand,congestion is still a bottleneck for traffic management and planning.This research paper presents a blockchain-based framework that protects the privacy of vehicle owners and provides data security by storing vehicular data on the blockchain,which will be used further for congestion detection and mitigation.Numerous devices placed along the road are used to communicate with passing cars and collect their data.The collected data will be compiled periodically to find the average travel time of vehicles and traffic density on a particular road segment.Furthermore,this data will be stored in the memory pool,where other devices will also store their data.After a predetermined amount of time,the memory pool will be mined,and data will be uploaded to the blockchain in the form of blocks that will be used to store traffic statistics.The information is then used in two different ways.First,the blockchain’s final block will provide real-time traffic data,triggering an intelligent traffic signal system to reduce congestion.Secondly,the data stored on the blockchain will provide historical,statistical data that can facilitate the analysis of traffic conditions according to past behavior.展开更多
Traffic incident management (TIM) is a FHWA Every Day Counts initiative with the objective of reducing secondary crashes, improving travel reliability, and ensuring safety of responders. Agency roadside cameras play a...Traffic incident management (TIM) is a FHWA Every Day Counts initiative with the objective of reducing secondary crashes, improving travel reliability, and ensuring safety of responders. Agency roadside cameras play a critical role in TIM by helping dispatchers quickly identify the precise location of incidents when receiving reports from motorists with varying levels of spatial accuracy. Reconciling position reports that are often mile marker based, with cameras that operate in a Pan-Tilt-Zoom coordinate system relies on dispatchers having detailed knowledge for hundreds of cameras and perhaps some presets. During real-time incident dispatching, reducing the time it takes to identify the most relevant cameras and setting their view on the incident is an important opportunity to improve incident management dispatch times. This research develops a camera-to-mile marker mapping technique that automatically sets the camera view to a specified mile marker within the field-of-view of the camera. Over 350 traffic cameras along Indiana’s 2250 directional miles of interstate were mapped to approximately 5000 discrete locations that correspond to approximately 780 directional miles (~35% of interstate) of camera coverage. This newly developed technique will allow operators to quickly identify the nearest camera and set them to the reported location. This research also identifies segments on the interstate system with limited or no camera coverage for decision makers to prioritize future capital investments. This paper concludes with brief discussion on future research to automate the mapping using LiDAR data and to set the cameras after automatically detecting the events using connected vehicle trajectory data.展开更多
Traffic management is an important contribution in the sustainable development of urban traffic.The complexity of traffic problems determines the difficulty of traffic management.Therefore,traffic management needs the...Traffic management is an important contribution in the sustainable development of urban traffic.The complexity of traffic problems determines the difficulty of traffic management.Therefore,traffic management needs the guidance of scientific theories.This paper explores traffic management systems engineering for management road traffic.First,the paper looks at the contents of road traffic management from a systems perspective.Second,the paper briefly describes systems engineering,and explains the necessity and feasibility of the combination of the traffic management and systems engineering.At last,the paper puts forward the concept of traffic management systems engineering using a systems framework.展开更多
With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobil...With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobilization in China has further intensified the pressure of the road traffic.The traffic jam alarm caused by the traffic accidents is increasing year by year.The minor accidents that can be dealt with quickly account for more than 70%of the traffic accidents.Traditionally,when dealing with the minor accidents,car owners often choose to stay on the spot and wait for the traffic police to deal with them.It is easy to cause"minor accidents and big traffic jams",which lead to the congestion of a road,a bridge and even a block.展开更多
文摘Theoretically, a system is anything that is made up of various parts. Theses parts are known as subsystems. At every point in time, these parts should work in harmony so that objectives could be achieved successfully. A system could be inanimate or animate item. Examples of inanimate systems include vehicles, households, computer and institution. Examples of animate systems are human being, animal and insect. Both inanimate and animate systems are made up of various subsystems. Such subsystems are required to co-operate, collaborate and work together so that set objectives could be achieved successfully. From practical managerial point of view, business organizations are equally systems that are made up of subsystems which may take the form of departments, sections and/or units. It is supposed to be collaborations among the managers and other members in these departments, sections and/or units so that organizational objectives could be achieved. All the managers in various departments, sections and/or units are required to work together as a team to make the system coherent and closely-knit to make disintegration impossible. Closely related to the systems approach to management is managerial decision-making. Decision-making is a very important function of every manager's job. The success and failure stories of many organizations are the result of the quality of decisions made. Many organizations have survived turbulent conditions. Others have also collapsed in spite of favourable conditions. These varying conditions are the result of the quality of decisions made by managers at positions of authority and responsibility. Therefore the systems approach to management enjoins top managers in particular to be very circumspect and cautious in certain decision-making activities. This is because, the quality of decision a manager makes can go a long way to determine the success or failure story of an organization as exemplified in the case study in this paper.
文摘In modern workforce management,the demand for new ways to maximize worker satisfaction,productivity,and security levels is endless.Workforce movement data such as those source data from an access control system can support this ongoing process with subsequent analysis.In this study,a solution to attaining this goal is proposed,based on the design and implementation of a data mart as part of a dimensional trajectory data warehouse(TDW)that acts as a repository for the management of movement data.A novel methodological approach is proposed for modeling multiple spatial and temporal dimensions in a logical model.The case study presented in this paper for modeling and analyzing workforce movement data is to support human resource management decision-making and the following discussion provides a representative example of the contribution of a TDW in the process of information management and decision support systems.The entire process of exporting,cleaning,consolidating,and transforming data is implemented to achieve an appropriate format for final import.Structured query language(SQL)queries demonstrate the convenience of dimensional design for data analysis,and valuable information can be extracted from the movements of employees on company premises to manage the workforce efficiently and effectively.Visual analytics through data visualization support the analysis and facilitate decisionmaking and business intelligence.
基金The National Natural Science Foundation of China(No.50378016).
文摘Management tactics for urban traffic management are presented.The tactics that underlie traffic demand management (TDM) are preferential development tactics, controlled development tactics,prohibited development tactics and economic lever tactics,and those that underlie traffic system management (TSM) are node traffic management tactics,arterial traffic management tactics and area traffic management tactics.The specific contents and design methods of urban traffic total demand control,urban traffic structure optimization,road traffic movement organization based on TDM and intersection traffic management,road signs and markings management,optimized design of traffic signals and management of parking spaces based on TSM are put forward.The urban traffic management planning scheme design method has already been used in the urban traffic management “Smooth Traffic Project” in China.
文摘The air traffic management system(ATM)has the task of ensuring safe,orderly and expeditious flow of air traffic.The ATM system architecture is very much dependent on the concept of operations(ConOps).Over the years the evolution in ConOps has resulted in changes in the ATM′s physical architecture,improving its physical infrastructure,increasing the levels of automation and making operational changes to improve air traffic flow,to cope with increasing demand for air travel.However,what is less clear is the impact of such changes in ConOps on the ATM′s functional architecture.This is vital for ensuring optimality in the implementation of the physical architecture components to support the ATM functions.This paper reviews the changes in the ConOps over the years,proposes a temporally invariant ATM functional model,and discusses some of the main key technologies expected to make significant improvements to the ATM system.
基金supported by the National Natural Science Foundation of China (Nos.U1833103, 71801215, U1933103)the Fundamental Research Funds for the Central Universities (No.3122019129)。
文摘Along with the rapid development of air traffic, the contradiction between conventional air traffic management(ATM)and the increasingly complex air traffic situations is more severe,which essentially reduces the operational efficiency of air transport systems. Thus,objectively measuring the air traffic situation complexity becomes a concern in the field of ATM. Most existing studies focus on air traffic complexity assessment,and rarely on the scientific guidance of complex traffic situations. According to the projected time of aircraft arriving at the target sector boundary,we formulated two control strategies to reduce the air traffic complexity. The strategy of entry time optimization was applied to the controllable flights in the adjacent upstream sectors. In contrast,the strategy of flying dynamic speed optimization was applied to the flights in the target sector. During the process of solving complexity control models,we introduced a physical programming method. We transformed the multi-objective optimization problem involving complexity and delay to single-objective optimization problems by designing different preference function. Actual data validated the two complexity control strategies can eliminate the high-complexity situations in reality. The control strategy based on the entry time optimization was more efficient than that based on the speed dynamic optimization. A basic framework for studying air traffic complexity management was preliminarily established. Our findings will help the implementation of a complexity-based ATM.
文摘The main objective of this study is to evaluate the effectiveness of using active traffic management (ATM) strategies on freeways in terms of the driver's behavior and operational impacts. A few test beds were selected to evaluate the impacts of ATM such as speed harmonization, shoulder utilization, and ramp metering. Test beds used in this study were at places where an ATM is either proposed or previously implemented, i.e., where data exists for condi- tions prior to and after the implementation of ATM. Data collected from the test beds were used in a simulation model to evaluate the impacts of each ATM strategy on speed, travel time, and crash rates. Simulation results indicated that the implementation of speed harmonization on US 90 showed a 14% reduction in crashes and a 2%-3% increase in freeway speed; the implementation of hard shoulders on US 90 showed a 39% increase in travel time, 22% increase in freeway capacity and 60% decrease in delays; and the implementation of ramp metering on US 59 between Bissonnet St. and Fondern road showed a decrease of 23 % in freeway travel time, a 14% increase in freeway speed and 11% decrease in accident rates.
基金ACKNOWLEDGEMENT This work was supported by the National Na- tural Science Foundation of China under Gra- nts No. 61172079, 61231008, No. 61201141, No. 61301176 the National Basic Research Program of China (973 Program) under Grant No. 2009CB320404+2 种基金 the 111 Project under Gr- ant No. B08038 the National Science and Tec- hnology Major Project under Grant No. 2012- ZX03002009-003, No. 2012ZX03004002-003 and the Shaanxi Province Science and Techno- logy Research and Development Program un- der Grant No. 2011KJXX-40.
文摘The traffic with tidal phenomenon in Heterogeneous Wireless Networks(HWNs)has radically increased the complexity of radio resource management and its performance analysis.In this paper,a Simplified Dynamic Hierarchy Resource Management(SDHRM)algorithm exploiting the resources dynamically and intelligently is proposed with the consideration of tidal traffic.In network-level resource allocation,the proposed algorithm first adopts wavelet neural network to forecast the traffic of each sub-area and then allocates the resources to those sub-areas to maximise the network utility.In connection-level network selection,based on the above resource allocation and the pre-defined QoS requirement,three typical network selection policies are provided to assign traffic flow to the most appropriate network.Furthermore,based on multidimensional Markov model,we analyse the performance of SDHRM in HWNs with heavy tailed traffic.Numerical results show that our theoretical values coincide with the simulation results and the SDHRM can improve the resource utilization.
文摘The Single European Sky Air Traffic management(ATM)Research(SESAR)project is the technological pillar of the European Commission’s Single European Sky Initiative to modernize ATM.Here,we describe the process of establishing SESAR and the main parts of the project:the research and development(R&D)part,which is led by the SESAR Joint Undertaking;the deployment part,which is managed by the SESAR Deployment Manager;and the European ATM Master Plan,which collects and lays out both the R&D and deployment needs.The latest European ATM Master Plan was adopted just prior to the current pandemic.The huge loss in air traffic due to the pandemic,and the speed of the recovery of the aviation industry will require reprioritization,but the main elements that have been established-particularly those in support of the environment-remain valid.
基金supported by the National Natural Science Foundation of China(62073330)the Natural Science Foundation of Hunan Province(2020JJ4339)the Scientific Research Fund of Hunan Province Education Department(20B272).
文摘The use of artificial intelligence(AI)has increased since the middle of the 20th century,as evidenced by its applications to a wide range of engineering and science problems.Air traffic management(ATM)is becoming increasingly automated and autonomous,making it lucrative for AI applications.This paper presents a systematic review of studies that employ AI techniques for improving ATM capability.A brief account of the history,structure,and advantages of these methods is provided,followed by the description of their applications to several representative ATM tasks,such as air traffic services(ATS),airspace management(AM),air traffic flow management(ATFM),and flight operations(FO).The major contribution of the current review is the professional survey of the AI application to ATM alongside with the description of their specific advantages:(i)these methods provide alternative approaches to conventional physical modeling techniques,(ii)these methods do not require knowing relevant internal system parameters,(iii)these methods are computationally more efficient,and(iv)these methods offer compact solutions to multivariable problems.In addition,this review offers a fresh outlook on future research.One is providing a clear rationale for the model type and structure selection for a given ATM mission.Another is to understand what makes a specific architecture or algorithm effective for a given ATM mission.These are among the most important issues that will continue to attract the attention of the AI research community and ATM work teams in the future.
文摘Traffic congestion problem is one of the major problems that face many transportation decision makers for urban areas. The problem has many impacts on social, economical and development aspects of urban areas. Hence the solution to this problem is not straight forward. It requires a lot of effort, expertise, time and cost that sometime are not available. Most of the existing transportation planning software, specially the most advanced ones, requires personnel with lots practical transportation planning experience and with high level of education and training. In this paper we propose a comprehensive framework for an Intelligent Decision Support System (IDSS) for Traffic Congestion Management System that utilizes a state of the art transportation network equilibrium modeling and providing an easy to use GIS-based interaction environment. The developed IDSS reduces the dependability on the expertise and level of education of the transportation planners, transportation engineers, or any transportation decision makers.
文摘The increasing need to manage natural resources sustainably, driven by population growth, requires the simultaneous use of Participatory Techniques (PT) and landscape planning for structured decision-making. We conducted a bibliometric and systematic review to provide an overview of PT usage, identifying evolution in scientific production. We considered the number of publications and citations, prominent journals, and highly cited articles on scientific papers published in the Web of Science database between 1993 and 2023. A total of 415 articles related to PT were identified. After content evaluation, 19 critical articles were selected that underpin the growing combined use of models and indices with PT, enhancing the robustness and credibility of decision-making processes.
文摘This study develops a procedure to rank agencies based on their incident responses using roadway clearance times for crashes. This analysis is not intended to grade agencies but to assist in identifying agencies requiring more training or resources for incident management. Previous NCHRP reports discussed usage of different factors including incident severity, roadway characteristics, number of lanes involved and time of incident separately for estimating the performance. However, it does not tell us how to incorporate all the factors at the same time. Thus, this study aims to account for multiple factors to ensure fair comparisons. This study used 149,174 crashes from Iowa that occurred from 2018 to 2021. A Tobit regression model was used to find the effect of different variables on roadway clearance time. Variables that cannot be controlled directly by agencies such as crash severity, roadway type, weather conditions, lighting conditions, etc., were included in the analysis as it helps to reduce bias in the ranking procedure. Then clearance time of each crash is normalized into a base condition using the regression coefficients. The normalization makes the process more efficient as the effect of uncontrollable factors has already been mitigated. Finally, the agencies were ranked by their average normalized roadway clearance time. This ranking process allows agencies to track their performance of previous crashes, can be used in identifying low performing agencies that could use additional resources and training, and can be used to identify high performing agencies to recognize for their efforts and performance.
文摘The performance model proposed by this study represents an innovative approach to deal with performance assessment in ATM (air traffic management). It is based on Bayesian networks methodology, which presents several advantages but also some drawbacks as highlighted along the paper. We illustrate the main steps required for building the model and present a number of interesting results. The contribution of the paper is two-fold: (1) It presents a new methodological approach to deal with a problem which is of strategic importance for ANSPs (air navigation service providers); (2) It provides insights on the interdependencies between factors influencing performance. Both results are considered particularly important nowadays, due to the SES (Single European Sky) performance scheme and its related target setting process.
文摘This study aims to investigate the influence of social media on college choice among undergraduates majoring in Big Data Management and Application in China.The study attempts to reveal how information on social media platforms such as Weibo,WeChat,and Zhihu influences the cognition and choice process of prospective students.By employing an online quantitative survey questionnaire,data were collected from the 2022 and 2023 classes of new students majoring in Big Data Management and Application at Guilin University of Electronic Technology.The aim was to evaluate the role of social media in their college choice process and understand the features and information that most attract prospective students.Social media has become a key factor influencing the college choice decision-making of undergraduates majoring in Big Data Management and Application in China.Students tend to obtain school information through social media platforms and use this information as an important reference in their decision-making process.Higher education institutions should strengthen their social media information dissemination,providing accurate,timely,and attractive information.It is also necessary to ensure effective management of social media platforms,maintain a positive reputation for the school on social media,and increase the interest and trust of prospective students.Simultaneously,educational decision-makers should consider incorporating social media analysis into their recruitment strategies to better attract new student enrollment.This study provides a new perspective for understanding higher education choice behavior in the digital age,particularly by revealing the importance of social media in the educational decision-making process.This has important practical and theoretical implications for higher education institutions,policymakers,and social media platform operators.
文摘This paper presents the design of traffic management mechanism in BUPT--IN system.Three function entities, SMF, SCF and SSF, cooperate to complete the traffic management function. The superiorities of this mechanism and the trend of network management in iN (intelligent network) are also discussed.
基金This work was supported by Taif University Researchers Supporting Program(project number:TURSP-2020/195),Taif University,Saudi Arabia.
文摘Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches.
基金funded by the Deanship of Scientific Research at King Khalid University,Kingdom of Saudi Arabia for large group Research Project under grant number:RGP2/249/44.
文摘Connected and autonomous vehicles are seeing their dawn at this moment.They provide numerous benefits to vehicle owners,manufacturers,vehicle service providers,insurance companies,etc.These vehicles generate a large amount of data,which makes privacy and security a major challenge to their success.The complicated machine-led mechanics of connected and autonomous vehicles increase the risks of privacy invasion and cyber security violations for their users by making them more susceptible to data exploitation and vulnerable to cyber-attacks than any of their predecessors.This could have a negative impact on how well-liked CAVs are with the general public,give them a poor name at this early stage of their development,put obstacles in the way of their adoption and expanded use,and complicate the economic models for their future operations.On the other hand,congestion is still a bottleneck for traffic management and planning.This research paper presents a blockchain-based framework that protects the privacy of vehicle owners and provides data security by storing vehicular data on the blockchain,which will be used further for congestion detection and mitigation.Numerous devices placed along the road are used to communicate with passing cars and collect their data.The collected data will be compiled periodically to find the average travel time of vehicles and traffic density on a particular road segment.Furthermore,this data will be stored in the memory pool,where other devices will also store their data.After a predetermined amount of time,the memory pool will be mined,and data will be uploaded to the blockchain in the form of blocks that will be used to store traffic statistics.The information is then used in two different ways.First,the blockchain’s final block will provide real-time traffic data,triggering an intelligent traffic signal system to reduce congestion.Secondly,the data stored on the blockchain will provide historical,statistical data that can facilitate the analysis of traffic conditions according to past behavior.
文摘Traffic incident management (TIM) is a FHWA Every Day Counts initiative with the objective of reducing secondary crashes, improving travel reliability, and ensuring safety of responders. Agency roadside cameras play a critical role in TIM by helping dispatchers quickly identify the precise location of incidents when receiving reports from motorists with varying levels of spatial accuracy. Reconciling position reports that are often mile marker based, with cameras that operate in a Pan-Tilt-Zoom coordinate system relies on dispatchers having detailed knowledge for hundreds of cameras and perhaps some presets. During real-time incident dispatching, reducing the time it takes to identify the most relevant cameras and setting their view on the incident is an important opportunity to improve incident management dispatch times. This research develops a camera-to-mile marker mapping technique that automatically sets the camera view to a specified mile marker within the field-of-view of the camera. Over 350 traffic cameras along Indiana’s 2250 directional miles of interstate were mapped to approximately 5000 discrete locations that correspond to approximately 780 directional miles (~35% of interstate) of camera coverage. This newly developed technique will allow operators to quickly identify the nearest camera and set them to the reported location. This research also identifies segments on the interstate system with limited or no camera coverage for decision makers to prioritize future capital investments. This paper concludes with brief discussion on future research to automate the mapping using LiDAR data and to set the cameras after automatically detecting the events using connected vehicle trajectory data.
文摘Traffic management is an important contribution in the sustainable development of urban traffic.The complexity of traffic problems determines the difficulty of traffic management.Therefore,traffic management needs the guidance of scientific theories.This paper explores traffic management systems engineering for management road traffic.First,the paper looks at the contents of road traffic management from a systems perspective.Second,the paper briefly describes systems engineering,and explains the necessity and feasibility of the combination of the traffic management and systems engineering.At last,the paper puts forward the concept of traffic management systems engineering using a systems framework.
文摘With the development of the social economy,the traditional transportation mode will be replaced by the new mode which emphasizes the integration and cooperation between the transportation modes.The advent of automobilization in China has further intensified the pressure of the road traffic.The traffic jam alarm caused by the traffic accidents is increasing year by year.The minor accidents that can be dealt with quickly account for more than 70%of the traffic accidents.Traditionally,when dealing with the minor accidents,car owners often choose to stay on the spot and wait for the traffic police to deal with them.It is easy to cause"minor accidents and big traffic jams",which lead to the congestion of a road,a bridge and even a block.