为定量识别城市非信控环形交叉口区域内的机动车冲突风险易发生点,降低环形交叉口的事故发生率,本文构建针对非信控环形交叉口机动车冲突风险识别模型。首先,利用无人机采集高精度、连续的多车辆轨迹视频,结合Kinovea视频运动分析软件...为定量识别城市非信控环形交叉口区域内的机动车冲突风险易发生点,降低环形交叉口的事故发生率,本文构建针对非信控环形交叉口机动车冲突风险识别模型。首先,利用无人机采集高精度、连续的多车辆轨迹视频,结合Kinovea视频运动分析软件实现运行车辆状态识别与跟踪,并记录车辆每一帧的运动数据;其次,基于交通冲突识别指标TTC(Time to Collision),提出适应环形交叉口道路线形特征的车辆TTC计算方法,并使用累计频率法确定严重、一般和轻微冲突的阈值分别为1.2,2.8,4.4 s;最后,通过绘制高峰和平峰交通冲突空间异步图,并结合交通冲突数和严重冲突率,对环形交叉口的36个子区段进行交通冲突风险等级评定。研究结果显示:在高峰时段,某一子区段的平均交通冲突发生次数约为15次,严重冲突率为17.45%;在平峰时段,某一子区段的平均交通冲突发生次数约为8次,严重冲突率为8.28%。重度风险区域在高峰时段占比达到50%,而在平峰时段为8.33%,这些重度风险区域主要集中在交织区段。因此,环形交叉口在高峰时段且位于交织区段的情况更易发生交通事故。本文研究成果有助于交通管理部门了解环形交叉口在不同时段和区段上的交通冲突情况和特征,以便采取相应的预警和管理措施。展开更多
为评估交通管控策略的环境效益,提出有效融合微观交通仿真模型和微观车辆排放模型的方法。利用VISSIM平台构建案例微观交通仿真模型,提出基于轨迹数据的不同速度区间的加减速特征,应用K-means聚类方法划分4种驾驶行为,通过驾驶特性标定...为评估交通管控策略的环境效益,提出有效融合微观交通仿真模型和微观车辆排放模型的方法。利用VISSIM平台构建案例微观交通仿真模型,提出基于轨迹数据的不同速度区间的加减速特征,应用K-means聚类方法划分4种驾驶行为,通过驾驶特性标定仿真模型全局参数,描述了参数总敏感度以及参数之间相互作用的敏感度。利用DBSCAN(density-based spatial clustering of applications with noise)聚类分析并标定局部参数值,优化了参数标定流程。计算仿真轨迹工况,本地化MOVES(motor vehicle emission simulator)微观排放模型,得到交叉口不同流向和不同驾驶行为下的HC、CO、NO_(x)、CO_(2)排放。研究表明:仿真模型优化效果显著,所提方法可精确识别高排放的空间位置,解析排放与驾驶行为之间的联系。应用DBSCAN聚类分析参数寻优值有助于实现自动化标定流程,全局参数标定将速度分布χ^(2)误差由0.6327降至0.1306,加速度分布χ^(2)误差由0.1441降至0.0528,对于环境视角下仿真模型构建至关重要。展开更多
The cellular automata (CA) micro-simulation model was used to describe the behavior of the mixed traffic flows at crosswalks where the pedestrians compete with the vehicles to cross the roadway. The focus of this pa...The cellular automata (CA) micro-simulation model was used to describe the behavior of the mixed traffic flows at crosswalks where the pedestrians compete with the vehicles to cross the roadway. The focus of this paper is the behavior of pedestrians and the influence of pedestrians' behavior on the vehicle flow, pedestrian flows, and the vehicle waiting time. The proportion of pedestrians who do not obey traffic laws, the group effect, and expected waiting time of pedestrians, regarded as the most important pedestrian characteristics, are taken into consideration in the analysis. Simulation results show the ability of the microsimulation to capture the most important features of mixed traffic flow.展开更多
Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic management and poor drainage system. The main object...Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic management and poor drainage system. The main objective of the study is to model the interdisciplinary issues of storm water and its effect on the traffic of Karachi. The specific objectives are (1) to calibrate and validate urban hydraulic and traffic micro-simulation models and (2) to model storm water and traffic for future conditions. This study is carried out on a 3-km section of arterial road. In this study, loose coupling of two models is done. For urban drainage, PCSWMM, and for traffic, VISSIM is used. Both models are calibrated for an existing situation on rainfall event of August 3, 2013, and then used for prediction of future scenario based on 50-year and 100-year return periods of rainfall. Sensitivity analysis of VISSIM is performed. Locations and lengths of road sections, where ponding happens for the future scenario, are identified using PCSWMM. These lengths axe then marked in VISSIM as low-speed areas, and delays are measured. Analysis of PCSWMM shows that for 100-year return period, there is maximum 0.318 ha-m (3180 cubic meters) water stored in the depressions of the road after 10 h of rainfall. Analysis of VISSIM shows that for a 100-year return period, there is a maximum delay of 35 min on NIPA to Hasan Square section of University Road.展开更多
文摘为定量识别城市非信控环形交叉口区域内的机动车冲突风险易发生点,降低环形交叉口的事故发生率,本文构建针对非信控环形交叉口机动车冲突风险识别模型。首先,利用无人机采集高精度、连续的多车辆轨迹视频,结合Kinovea视频运动分析软件实现运行车辆状态识别与跟踪,并记录车辆每一帧的运动数据;其次,基于交通冲突识别指标TTC(Time to Collision),提出适应环形交叉口道路线形特征的车辆TTC计算方法,并使用累计频率法确定严重、一般和轻微冲突的阈值分别为1.2,2.8,4.4 s;最后,通过绘制高峰和平峰交通冲突空间异步图,并结合交通冲突数和严重冲突率,对环形交叉口的36个子区段进行交通冲突风险等级评定。研究结果显示:在高峰时段,某一子区段的平均交通冲突发生次数约为15次,严重冲突率为17.45%;在平峰时段,某一子区段的平均交通冲突发生次数约为8次,严重冲突率为8.28%。重度风险区域在高峰时段占比达到50%,而在平峰时段为8.33%,这些重度风险区域主要集中在交织区段。因此,环形交叉口在高峰时段且位于交织区段的情况更易发生交通事故。本文研究成果有助于交通管理部门了解环形交叉口在不同时段和区段上的交通冲突情况和特征,以便采取相应的预警和管理措施。
文摘为评估交通管控策略的环境效益,提出有效融合微观交通仿真模型和微观车辆排放模型的方法。利用VISSIM平台构建案例微观交通仿真模型,提出基于轨迹数据的不同速度区间的加减速特征,应用K-means聚类方法划分4种驾驶行为,通过驾驶特性标定仿真模型全局参数,描述了参数总敏感度以及参数之间相互作用的敏感度。利用DBSCAN(density-based spatial clustering of applications with noise)聚类分析并标定局部参数值,优化了参数标定流程。计算仿真轨迹工况,本地化MOVES(motor vehicle emission simulator)微观排放模型,得到交叉口不同流向和不同驾驶行为下的HC、CO、NO_(x)、CO_(2)排放。研究表明:仿真模型优化效果显著,所提方法可精确识别高排放的空间位置,解析排放与驾驶行为之间的联系。应用DBSCAN聚类分析参数寻优值有助于实现自动化标定流程,全局参数标定将速度分布χ^(2)误差由0.6327降至0.1306,加速度分布χ^(2)误差由0.1441降至0.0528,对于环境视角下仿真模型构建至关重要。
基金Supported by the National Natural Science Foundation of China (No. 60374059)the National Key Basic Research and Develop-ment (973) Program of China (No. 2006CB705500)the Na-tional High-Tech Research and Development Program (863) of China (Nos. 2006AA11Z208 and 2006AA11Z229)
文摘The cellular automata (CA) micro-simulation model was used to describe the behavior of the mixed traffic flows at crosswalks where the pedestrians compete with the vehicles to cross the roadway. The focus of this paper is the behavior of pedestrians and the influence of pedestrians' behavior on the vehicle flow, pedestrian flows, and the vehicle waiting time. The proportion of pedestrians who do not obey traffic laws, the group effect, and expected waiting time of pedestrians, regarded as the most important pedestrian characteristics, are taken into consideration in the analysis. Simulation results show the ability of the microsimulation to capture the most important features of mixed traffic flow.
文摘Traffic management and drainage system are two vital issues for any metropolitan city. Like other big cities, Karachi is also facing problems due to lack of traffic management and poor drainage system. The main objective of the study is to model the interdisciplinary issues of storm water and its effect on the traffic of Karachi. The specific objectives are (1) to calibrate and validate urban hydraulic and traffic micro-simulation models and (2) to model storm water and traffic for future conditions. This study is carried out on a 3-km section of arterial road. In this study, loose coupling of two models is done. For urban drainage, PCSWMM, and for traffic, VISSIM is used. Both models are calibrated for an existing situation on rainfall event of August 3, 2013, and then used for prediction of future scenario based on 50-year and 100-year return periods of rainfall. Sensitivity analysis of VISSIM is performed. Locations and lengths of road sections, where ponding happens for the future scenario, are identified using PCSWMM. These lengths axe then marked in VISSIM as low-speed areas, and delays are measured. Analysis of PCSWMM shows that for 100-year return period, there is maximum 0.318 ha-m (3180 cubic meters) water stored in the depressions of the road after 10 h of rainfall. Analysis of VISSIM shows that for a 100-year return period, there is a maximum delay of 35 min on NIPA to Hasan Square section of University Road.