期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于网格模型与K-Means算法的交通状态演变特征
被引量:
4
1
作者
李甜
李瑞玲
+2 位作者
张萌萌
宋欣航
王帅琦
《山东交通学院学报》
CAS
2021年第1期15-20,共6页
为利用海量网约车轨迹数据实现对城市交通状态的高效识别与分类,对成都市网约车轨迹数据进行预处理,构建城市交通状态识别网格模型,根据模型判别网格的交通状态。利用K-Means聚类算法对不同时段的交通状态进行聚类,并将交通状态分为持...
为利用海量网约车轨迹数据实现对城市交通状态的高效识别与分类,对成都市网约车轨迹数据进行预处理,构建城市交通状态识别网格模型,根据模型判别网格的交通状态。利用K-Means聚类算法对不同时段的交通状态进行聚类,并将交通状态分为持续畅通型、轻度缓行型、持续缓行型、持续拥堵型4种类型,从时间维度和空间维度分析不同网格的交通状态演变特征。结果表明:研究区域内交通状态相对稳定,持续拥堵区域分散,持续缓行区域较为集中。基于网格模型与K-Means算法的交通状态识别方法能够实现对交通状态的快速判别与聚类,可实现对不同城市交通状态的识别。
展开更多
关键词
交通状态
网约车轨迹数据
网格模型
K-MEANS
下载PDF
职称材料
题名
基于网格模型与K-Means算法的交通状态演变特征
被引量:
4
1
作者
李甜
李瑞玲
张萌萌
宋欣航
王帅琦
机构
山东交通学院交通与物流工程学院
西南交通大学利兹学院
出处
《山东交通学院学报》
CAS
2021年第1期15-20,共6页
基金
国家自然科学基金项目(ZR2017MF011)。
文摘
为利用海量网约车轨迹数据实现对城市交通状态的高效识别与分类,对成都市网约车轨迹数据进行预处理,构建城市交通状态识别网格模型,根据模型判别网格的交通状态。利用K-Means聚类算法对不同时段的交通状态进行聚类,并将交通状态分为持续畅通型、轻度缓行型、持续缓行型、持续拥堵型4种类型,从时间维度和空间维度分析不同网格的交通状态演变特征。结果表明:研究区域内交通状态相对稳定,持续拥堵区域分散,持续缓行区域较为集中。基于网格模型与K-Means算法的交通状态识别方法能够实现对交通状态的快速判别与聚类,可实现对不同城市交通状态的识别。
关键词
交通状态
网约车轨迹数据
网格模型
K-MEANS
Keywords
traffic sate
net-charted cars′trajectory data
grid model
K-Means
分类号
U491.112 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于网格模型与K-Means算法的交通状态演变特征
李甜
李瑞玲
张萌萌
宋欣航
王帅琦
《山东交通学院学报》
CAS
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部