This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an op...This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial "small worlds". Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.展开更多
Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizi...Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizing non-intrusive sensors for traffic data collection were studied. Both fixed and portable sensors with infrared, microwave and image recognition technologies were tested. Most sensors obtained accurate or fairly accurate measurements of volume and speed, but vehicle classification counts were problematic even when classes were reduced to 3 to 5 compared to FHWA’s 13-class standard scheme.展开更多
As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big probl...As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.展开更多
The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in ...The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.展开更多
Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in t...Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in the form of maintained lateral gaps for modeling this traffic scenario. This paper aims at determining lateral clearances maintained by different vehicle types while moving in a heterogeneous traffic stream during overtaking. These data were collected using an instrumented vehicle which runs as a part of the stream. Variation of obtained clearance with average speed of interacting vehicles is studied and modeled. Different instrumented vehicles of various types are developed using (1) ultrasonic sensors fixed on both sides of vehicle, which provide inter-vehicular lateral distance and relative speed; and (2) GPS device with cameras, which provides vehicle type and speed of interacting vehicles. They are driven on different roads in six cities of India, to measure lateral gaps maintained with different interacting vehicles at different speeds. Relationships between lateral gaps and speed are modeled as regression lines with positive slopes and beta-distributed residuals. Nature of these graphs (i.e., slopes, intercepts, residuals) are also evaluated and compared for different interacting vehicle-type pairs. It is observed that similar vehicle pairs maintain less lateral clearance than dissimilar vehicle pairs. If a vehicle interacts with two vehicles (one on each side) simultaneously, lateral clearance is reduced and safety of the vehicles is compromised. The obtained relationships can be used for simulating lateral clearance maintaining behavior of vehicles in heterogeneous traffic.展开更多
Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully ...Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.展开更多
This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population gi...This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population giving rise to higher emission of CO2 resulting in traffic congestion. Congested traffic has idling vehicles which emit higher CO2 and pollution. Besides, traffic congestion increases turnaround time, delivery time, commuting time and related logistical aspects. Commuting time negatively impacts working hours. Unless the traffic congestion is mitigated, the economy will take a beating creating a vicious ecology cycle. Building new roads, bridges or reconditioning of infrastructure is not always the best possible solutions. Efficient traffic management is a key to country’s economic growth. Various analytical models are employed to study, appreciate traffic congestion. The paper studies these models to infer that real time approach is the only solution. Several approaches are being worked on and few commercial systems too are available. These systems provide traffic information for course correction. However, it has latency and hence deviates from real time environment. Traffic congestion being highly dynamic in nature, it necessitates real time solution with real time inputs. It is proposed to integrate Real time traffic data with the traffic signal thus modulating the cycle timings at every junction. Deviation from static asymmetric cycle timing is implemented by assigning green phases based on density of vehicles. With minimalistic infrastructure and negligible incremental cost, the paper not only proposes to address traffic congestion but also paves the way for capturing traffic offenses, vehicle tracking and toll collection. The research is imminently realizable and makes a strong case for a PPP (Public Private Partnership) project.展开更多
This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic s...This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.展开更多
On-road Vehicular traffic congestion has detrimental effect on three lifelines: Economy, Productivity and Pollution (EPP). With ever increasing population of vehicles on road, traffic congestion is a major challenge t...On-road Vehicular traffic congestion has detrimental effect on three lifelines: Economy, Productivity and Pollution (EPP). With ever increasing population of vehicles on road, traffic congestion is a major challenge to the economy, productivity and pollution, notwithstanding continuous developments in alternative fuels, alternative sources of energy. The research develops accurate and precise model in real time which computes congestion detection, dynamic signaling algorithm to evenly distribute vehicle densities while ensuring avoidance of starvation and deadlock situation. The model incorporates road segment length and breadth, quality and achievable average speed to compute road capacity. Vehicles installed with GPS enabled devices provide their location, which enables computing road occupancy. Road occupancy is evaluated based on number of vehicles as well as area occupied by vehicles. Ratio of road occupancy and road capacity provides congestion index important to compute signal phases. The algorithm ensures every direction is serviced once during a signaling cycle ensuring no starvation. Secondly, the definition of minimum and maximum signal timings ensures against dead lock situation. A simulator is developed to validate the proposition and proves it can ease congestion by more than 50% which is better than any of the contemporary approaches offering 15% improvement. In case of higher congestion index, alternate routes are suggested based on evaluation of traffic density graphs for shortest route or knowledge database. The algorithm to compute shortest route is optimized drastically, reducing computation cost to 3*√2N vis-à-vis computation cost of N2 by classical algorithms. The proposal brings down the cost of implementation per traffic junction from USD 30,000 to USD 2000.展开更多
基金the National Key Basic Research and Development (973) Program of China (No. 2006CB705506)the National High-Tech Research and Development (863) Program of China (No. 2007AA11Z222)the National Natural Science Foundation of China (No. 50708054)
文摘This paper presents an optimized topology for urban traffic sensor networks. Small world theory is used to improve the performance of the wireless communication system with a heterogeneous transmission model and an optimal transmission radius. Furthermore, a series of simulations based on the actual road network around the 2nd Ring Road in Beijing demonstrate the practicability of constructing artificial "small worlds". Moreover, the particle swarm optimization method is used to calculate the globally best distribution of the nodes with the large radius. The methods proposed in this paper will be helpful to the sensor nodes deployment of the new urban traffic sensor networks.
文摘Extensive field tests of non-intrusive sensors for traffic volume, speed and classification detection were conducted under a variety of traffic composition and road width conditions. The accuracy challenges of utilizing non-intrusive sensors for traffic data collection were studied. Both fixed and portable sensors with infrared, microwave and image recognition technologies were tested. Most sensors obtained accurate or fairly accurate measurements of volume and speed, but vehicle classification counts were problematic even when classes were reduced to 3 to 5 compared to FHWA’s 13-class standard scheme.
文摘As a representative of chain-based protocol in Wireless Sensor Networks (WSNs), EEPB is an elegant solution on energy efficiency. However, in the latter part of the operation of the network, there is still a big problem: reserving energy of the node frequently presents the incapacity of directly communicating with the base station, at the same time capacity of data acquisition and transmission as normal nodes. If these nodes were selected as LEADER nodes, that will accelerate the death process and unevenness of energy consumption distribution among nodes.This paper proposed a chain routing algorithm based ontraffic prediction model (CRTP).The novel algorithmdesigns a threshold judgment method through introducing the traffic prediction model in the process of election of LEADER node. The process can be dynamically adjusted according to the flow forecasting. Therefore, this algorithm lets the energy consumption tend-ing to keep at same level. Simulation results show that CRTP has superior performance over EEPB in terms of balanced network energy consumption and the prolonged network life.
文摘The problem of traffic congestion is a significant phenomenon that has had a substantial impact on the transportation system within the country. This phenomenon has given rise to numerous intricacies, particularly in instances where emergency situations occur at traffic light intersections that are consistently congested with a high volume of vehicles. This implementation of a traffic light controller system is designed with the intention of addressing this problem. The purpose of the system was to facilitate the operation of a 3-way traffic control light and provide priority to emergency vehicles using a Radio Frequency Identification (RFID) sensor and Reduced Instruction Set Computing (RISC) Architecture Based Microcontroller. This research work involved designing a system to mitigate the occurrence of accidents commonly observed at traffic light intersections, where vehicles often need to maneuver in order to make way for emergency vehicles following a designated route. The research effectively achieved the analysis, simulation and implementation of wireless communication devices for traffic light control. The implemented prototype utilizes RFID transmission, operates in conjunction with the sequential mode of traffic lights to alter the traffic light sequence accordingly and reverts the traffic lights back to their normal sequence after the emergency vehicle has passed the traffic lights.
文摘Heterogeneous traffic conditions prevail in developing countries. Vehicles maintain weak lane discipline which increases lateral interactions of vehicles significantly. It is necessary to study these interactions in the form of maintained lateral gaps for modeling this traffic scenario. This paper aims at determining lateral clearances maintained by different vehicle types while moving in a heterogeneous traffic stream during overtaking. These data were collected using an instrumented vehicle which runs as a part of the stream. Variation of obtained clearance with average speed of interacting vehicles is studied and modeled. Different instrumented vehicles of various types are developed using (1) ultrasonic sensors fixed on both sides of vehicle, which provide inter-vehicular lateral distance and relative speed; and (2) GPS device with cameras, which provides vehicle type and speed of interacting vehicles. They are driven on different roads in six cities of India, to measure lateral gaps maintained with different interacting vehicles at different speeds. Relationships between lateral gaps and speed are modeled as regression lines with positive slopes and beta-distributed residuals. Nature of these graphs (i.e., slopes, intercepts, residuals) are also evaluated and compared for different interacting vehicle-type pairs. It is observed that similar vehicle pairs maintain less lateral clearance than dissimilar vehicle pairs. If a vehicle interacts with two vehicles (one on each side) simultaneously, lateral clearance is reduced and safety of the vehicles is compromised. The obtained relationships can be used for simulating lateral clearance maintaining behavior of vehicles in heterogeneous traffic.
基金supported by National Key Technologies Research and Development Program of China under Grant No.2014BAH14F01National Science and Technology Major Project of China under Grant No.2012ZX03005007+1 种基金National NSF of China Grant No.61402372Fundamental Research Funds for the Central Universities Grant No.3102014JSJ0003
文摘Sensor networks tend to support different traffic patterns since more and more emerging applications have diverse needs. We present MGRP, a Multi-Gradient Routing Protocol for wireless sensor networks, which is fully distributed and efficiently supports endto-end, one-to-many and many-to-one traffic patterns by effectively construct and maintain a gradient vector for each node. We further combine neighbor link estimation with routing information to reduce packet exchange on network dynamics and node failures. We have implemented MGRP on Tiny OS and evaluated its performance on real-world testbeds. The result shows MGRP achieves lower end-to-end packet delay in different traffic patterns compared to the state of the art routing protocols while still remains high packet delivery ratio.
文摘This paper proposes innovations to address challenges emanating from road traffic congestion. Improving economies create more car owners resulting in increased automobile manufacturing, increased vehicle population giving rise to higher emission of CO2 resulting in traffic congestion. Congested traffic has idling vehicles which emit higher CO2 and pollution. Besides, traffic congestion increases turnaround time, delivery time, commuting time and related logistical aspects. Commuting time negatively impacts working hours. Unless the traffic congestion is mitigated, the economy will take a beating creating a vicious ecology cycle. Building new roads, bridges or reconditioning of infrastructure is not always the best possible solutions. Efficient traffic management is a key to country’s economic growth. Various analytical models are employed to study, appreciate traffic congestion. The paper studies these models to infer that real time approach is the only solution. Several approaches are being worked on and few commercial systems too are available. These systems provide traffic information for course correction. However, it has latency and hence deviates from real time environment. Traffic congestion being highly dynamic in nature, it necessitates real time solution with real time inputs. It is proposed to integrate Real time traffic data with the traffic signal thus modulating the cycle timings at every junction. Deviation from static asymmetric cycle timing is implemented by assigning green phases based on density of vehicles. With minimalistic infrastructure and negligible incremental cost, the paper not only proposes to address traffic congestion but also paves the way for capturing traffic offenses, vehicle tracking and toll collection. The research is imminently realizable and makes a strong case for a PPP (Public Private Partnership) project.
文摘This article presents a study of vehicle acceleration distribution at a traffic signal stop line in an urban environment. Accurate representation of vehicle acceleration behavior provides important inputs to traffic simulation models especially when traffic related emissions need to be estimated. A smart eye TDS (traffic data sensor) system was used to record vehicle trajectories, which were extracted to calculate vehicle acceleration profiles. This paper presents the acceleration distributions obtained from over 300 passenger-car acceleration cycles observed on site from the stop line up to a maximum speed of 40 km/h. These distributions are compared with the outputs from a traffic micro simulation tool modeling a similar stop line scenario. The comparison shows that measured accelerations present wider distribution and lower values than the micro simulation. This result highlights the importance of using acceleration distribution calibrated with real-world measured data rather than default values in order to estimate accurate emission levels.
文摘On-road Vehicular traffic congestion has detrimental effect on three lifelines: Economy, Productivity and Pollution (EPP). With ever increasing population of vehicles on road, traffic congestion is a major challenge to the economy, productivity and pollution, notwithstanding continuous developments in alternative fuels, alternative sources of energy. The research develops accurate and precise model in real time which computes congestion detection, dynamic signaling algorithm to evenly distribute vehicle densities while ensuring avoidance of starvation and deadlock situation. The model incorporates road segment length and breadth, quality and achievable average speed to compute road capacity. Vehicles installed with GPS enabled devices provide their location, which enables computing road occupancy. Road occupancy is evaluated based on number of vehicles as well as area occupied by vehicles. Ratio of road occupancy and road capacity provides congestion index important to compute signal phases. The algorithm ensures every direction is serviced once during a signaling cycle ensuring no starvation. Secondly, the definition of minimum and maximum signal timings ensures against dead lock situation. A simulator is developed to validate the proposition and proves it can ease congestion by more than 50% which is better than any of the contemporary approaches offering 15% improvement. In case of higher congestion index, alternate routes are suggested based on evaluation of traffic density graphs for shortest route or knowledge database. The algorithm to compute shortest route is optimized drastically, reducing computation cost to 3*√2N vis-à-vis computation cost of N2 by classical algorithms. The proposal brings down the cost of implementation per traffic junction from USD 30,000 to USD 2000.