This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimi...This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.展开更多
To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in ...To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in a great deal of unnecessary traffic. Existing solutions generally adopt proactive caching and achieve traffic shifting by exploiting opportunistic contacts. The key challenge to maximize the offloading utility needs leveraging the trade-off between the offloaded traffic and the users' delay requirement. Since current caching scheme rarely address this challenge, in this paper, we first quantitatively interpret the offloading revenues on the cellular operator side associated with the scale of caching users, then develop a centralized caching protocol to maximize the offloading revenues, which includes the selective algorithm of caching location based on set-cover, the cached-data dissemination strategy based on multi-path routing and the cache replacement policy based on data popularity. The experimental results on real-world mobility traces show that the proposed caching protocol outperforms existing schemes in offloading scenario.展开更多
基金Supported by the National Natural Science Foundation of China (10671045)
文摘This paper considers the optimal traffic signal setting for an urban arterial road. By introducing the concepts of synchronization rate and non-synchronization degree, a mathematical model is constructed and an optimization problem is posed. Then, a new iterative algorithm is developed to solve this optimal traffic control signal setting problem. Convergence properties for this iterative algorithm are established. Finally, a numerical example is solved to illustrate the effectiveness of the method.
基金supported by the National Natural Science Foundation of China (61372117)
文摘To cope with the explosive data demands, offloading cellular traffic through mobile social networks(MSNs) has become a promising approach to alleviate traffic load. Indeed, the repeated data transmission results in a great deal of unnecessary traffic. Existing solutions generally adopt proactive caching and achieve traffic shifting by exploiting opportunistic contacts. The key challenge to maximize the offloading utility needs leveraging the trade-off between the offloaded traffic and the users' delay requirement. Since current caching scheme rarely address this challenge, in this paper, we first quantitatively interpret the offloading revenues on the cellular operator side associated with the scale of caching users, then develop a centralized caching protocol to maximize the offloading revenues, which includes the selective algorithm of caching location based on set-cover, the cached-data dissemination strategy based on multi-path routing and the cache replacement policy based on data popularity. The experimental results on real-world mobility traces show that the proposed caching protocol outperforms existing schemes in offloading scenario.