Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target size...Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%.展开更多
The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due ...The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value.展开更多
With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(...With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(IDS).However,both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features,resulting in an analysis that is not an optimal set.Therefore,in order to extract more representative traffic features as well as to improve the accuracy of traffic identification,this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T^(2) and a multilayer convolutional bidirectional long short-term memory(MSC_BiLSTM)classifier model for network traffic intrusion detection.This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory(BiLSTM)network,which fully considers the influence between the before and after features.The network traffic is first characteristically downscaled by principal component analysis(PCA),and then the downscaled principal components are used as input to Hotelling’s T^(2) to compare the differences between groups.For datasets with outliers,Hotelling’s T^(2) can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers.Finally,a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data.The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision,recall and F1-score juxtaposed with the prevailing techniques.The results show that the intrusion detection accuracy,precision,and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%,95.97%,and 90.22%.展开更多
Rapid advancement of intelligent transportation systems(ITS)and autonomous driving(AD)have shown the importance of accurate and efficient detection of traffic signs.However,certain drawbacks,such as balancing accuracy...Rapid advancement of intelligent transportation systems(ITS)and autonomous driving(AD)have shown the importance of accurate and efficient detection of traffic signs.However,certain drawbacks,such as balancing accuracy and real-time performance,hinder the deployment of traffic sign detection algorithms in ITS and AD domains.In this study,a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed.An enhanced backbone network module,called C2Net,which uses an upgraded bidirectional Res2Net,was introduced to mitigate information loss in the feature extraction process and to achieve information complementarity.Furthermore,a squeeze-and-excitation attention mechanism was incorporated within the channel attention of the architecture to perform channel-level feature correction on the input feature map,which effectively retains valuable features while removing non-essential features.A series of ablation experiments were conducted to validate the efficacy of the proposed methodology.The performance was evaluated using two distinct datasets:the Tsinghua-Tencent 100K and the CSUST Chinese traffic sign detection benchmark 2021.On the TT100K dataset,the method achieves precision,recall,and Map0.5 scores of 83.3%,79.3%,and 84.2%,respectively.Similarly,on the CCTSDB 2021 dataset,the method achieves precision,recall,and Map0.5 scores of 91.49%,73.79%,and 81.03%,respectively.Experimental results revealed that the proposed method had superior performance compared to conventional models,which includes the faster region-based convolutional neural network,single shot multibox detector,and you only look once version 5.展开更多
Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects i...Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects in the actual scene, this paper further adds blur and noise operation. Then, the asymptotic feature pyramid network (AFPN) is introduced to highlight the influence of key layer features after feature fusion, and simultaneously solve the direct interaction of non-adjacent layers. Experimental results on the TT100K dataset show that compared with the YOLOv8, the detection accuracy and recall are higher. .展开更多
Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes resea...Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.展开更多
To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate go...To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate goal of this research is to identify and classify the types of traffic signs in a panoramic image.To accomplish this goal,the paper proposes a new model for traffic sign detection based on the Convolutional Neural Network for com-prehensive traffic sign classification and Mask Region-based Convolutional Neural Networks(R-CNN)implementation for identifying and extracting signs in panoramic images.Data augmentation and normalization of the images are also applied to assist in classifying better even if old traffic signs are degraded,and considerably minimize the rates of discovering the extra boxes.The proposed model is tested on both the testing dataset and the actual images and gets 94.5%of the correct signs recognition rate,the classification rate of those signs discovered was 99.41%and the rate of false signs was only around 0.11.展开更多
Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOL...Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.展开更多
Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robust...Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robustness,a novel approach which uses the so-called improved constrained binary fast radial symmetry(ICBFRS) detector and pseudo-zernike moments based support vector machine(PZM-SVM) classifier is proposed.In the detection stage,the scene image containing the traffic signs will be converted into Lab color space for color segmentation.Then the ICBFRS detector can efficiently capture the position and scale of sign candidates within the scene by detecting the centers of circles.In the classification stage,once the candidates are cropped out of the image,pseudo-zernike moments are adopted to represent the features of extracted pictogram,which are then fed into a support vector machine to classify different traffic signs.Experimental results under different lighting conditions indicate that the proposed method has robust detection effect and high classification accuracy.展开更多
The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine ...The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.展开更多
Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource effic...Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.展开更多
Traffic sign detection is a crucial task for autonomous driving systems.However,the performance of deep learning-based algorithms for traffic sign detection is highly affected by the illumination conditions of scenari...Traffic sign detection is a crucial task for autonomous driving systems.However,the performance of deep learning-based algorithms for traffic sign detection is highly affected by the illumination conditions of scenarios.While existing algo-rithms demonstrate high accuracy in well-lit environments,they suffer from low accuracy in low-light scenarios.This paper proposes an end-to-end framework,LLTH-YOLOv5,specifically tailored for traffic sign detection in low-light scenarios,which enhances the input images to improve the detection performance.The proposed framework comproses two stages:the low-light enhancement stage and the object detection stage.In the low-light enhancement stage,a lightweight low-light enhancement network is designed,which uses multiple non-reference loss functions for parameter learning,and enhances the image by pixel-level adjustment of the input image with high-order curves.In the object detection stage,BIFPN is introduced to replace the PANet of YOLOv5,while designing a transformer-based detection head to improve the accuracy of small target detection.Moreover,GhostDarkNet53 is utilized based on Ghost module to replace the backbone network of YOLOv5,thereby improving the real-time performance of the model.The experimental results show that the proposed method significantly improves the accuracy of traffic sign detection in low-light scenarios,while satisfying the real-time requirements of autonomous driving.展开更多
交通标志辅助识别技术在自动驾驶体系中越发重要,由于不同的硬件设备承载力不同,使模型更轻量化的同时保持性能不变或更好成为当下各单位和企业的研究方向之一。为了使模型更轻量化的同时提升模型识别效果和检测速度,提出一种基于SWimAM...交通标志辅助识别技术在自动驾驶体系中越发重要,由于不同的硬件设备承载力不同,使模型更轻量化的同时保持性能不变或更好成为当下各单位和企业的研究方向之一。为了使模型更轻量化的同时提升模型识别效果和检测速度,提出一种基于SWimAM(a simple,parameter-free attention module add weight part for convolutional neural networks)设计YOLOv5(you only look once version 5)的轻量化交通标志检测方法。该方法基于SimAM机制加入可迭代学习权重改变内部权重的计算方式提出SWimAM模块,并将YOLOv5的backbone结构中的C3层替换成该模块,将head部分融合SE(squeeze-and-excitation networks)注意力机制的同时把损失函数替换为SIoU(soft intersection over union)强化了模型的检测精度减少了梯度的不稳定性。提出一种滤波拼接的数据增强方法扩充了TT100K交通标志数据集,解决了部分标签不均匀的问题。改进的YOLOv5s网络的在TT100K上识别平均精度提升2.5%、检测速度提升7.33%、计算复杂度下降3.07%、参数量下降9.27%。在中国交通标志检测数据集CCTSDB中和德国交通GTSDB数据集中平均精度分别达到94.9%和94.7%,验证了该模型具有良好的泛化性。展开更多
基金funded by National Natural Science Foundation of China(Grant No.U2004163).
文摘Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%.
文摘The correct identification of traffic signs plays an important role in automatic driving technology and road safety driving.Therefore,to address the problems of misdetection and omission in traffic sign detection due to the variety of sign types,significant size differences and complex background information,an improved traffic sign detection model for RT-DETR was proposed in this study.Firstly,the HiLo attention mechanism was added to the Attention-based Intra-scale Feature Interaction,which further enhanced the feature extraction capability of the network and improved the detection efficiency on high-resolution images.Secondly,the CAFMFusion feature fusion mechanism was designed,which enabled the network to pay attention to the features in different regions in each channel.Based on this,the model could better capture the remote dependencies and neighborhood feature correlation,improving the feature fusion capability of the model.Finally,the MPDIoU was used as the loss function of the improved model to achieve faster convergence and more accurate regression results.The experimental results on the TT100k-2021 traffic sign dataset showed that the improved model achieves the performance with a precision value of 90.2%,recall value of 88.1%and mAP@0.5 value of 91.6%,which are 4.6%,5.8%,and 4.4%better than the original RT-DETR model respectively.The model effectively improves the problem of poor traffic sign detection and has greater practical value.
基金supported by Tianshan Talent Training Project-Xinjiang Science and Technology Innovation Team Program(2023TSYCTD).
文摘With the increasing dimensionality of network traffic,extracting effective traffic features and improving the identification accuracy of different intrusion traffic have become critical in intrusion detection systems(IDS).However,both unsupervised and semisupervised anomalous traffic detection methods suffer from the drawback of ignoring potential correlations between features,resulting in an analysis that is not an optimal set.Therefore,in order to extract more representative traffic features as well as to improve the accuracy of traffic identification,this paper proposes a feature dimensionality reduction method combining principal component analysis and Hotelling’s T^(2) and a multilayer convolutional bidirectional long short-term memory(MSC_BiLSTM)classifier model for network traffic intrusion detection.This method reduces the parameters and redundancy of the model by feature extraction and extracts the dependent features between the data by a bidirectional long short-term memory(BiLSTM)network,which fully considers the influence between the before and after features.The network traffic is first characteristically downscaled by principal component analysis(PCA),and then the downscaled principal components are used as input to Hotelling’s T^(2) to compare the differences between groups.For datasets with outliers,Hotelling’s T^(2) can help identify the groups where the outliers are located and quantitatively measure the extent of the outliers.Finally,a multilayer convolutional neural network and a BiLSTM network are used to extract the spatial and temporal features of network traffic data.The empirical consequences exhibit that the suggested approach in this manuscript attains superior outcomes in precision,recall and F1-score juxtaposed with the prevailing techniques.The results show that the intrusion detection accuracy,precision,and F1-score of the proposed MSC_BiLSTM model for the CIC-IDS 2017 dataset are 98.71%,95.97%,and 90.22%.
基金funded by the National Key R&D Program of China,Grant Number 2017YFB0802803Beijing Natural Science Foundation,Grant Number 4202002.
文摘Rapid advancement of intelligent transportation systems(ITS)and autonomous driving(AD)have shown the importance of accurate and efficient detection of traffic signs.However,certain drawbacks,such as balancing accuracy and real-time performance,hinder the deployment of traffic sign detection algorithms in ITS and AD domains.In this study,a novel traffic sign detection algorithm was proposed based on the bidirectional Res2Net architecture to achieve an improved balance between accuracy and speed.An enhanced backbone network module,called C2Net,which uses an upgraded bidirectional Res2Net,was introduced to mitigate information loss in the feature extraction process and to achieve information complementarity.Furthermore,a squeeze-and-excitation attention mechanism was incorporated within the channel attention of the architecture to perform channel-level feature correction on the input feature map,which effectively retains valuable features while removing non-essential features.A series of ablation experiments were conducted to validate the efficacy of the proposed methodology.The performance was evaluated using two distinct datasets:the Tsinghua-Tencent 100K and the CSUST Chinese traffic sign detection benchmark 2021.On the TT100K dataset,the method achieves precision,recall,and Map0.5 scores of 83.3%,79.3%,and 84.2%,respectively.Similarly,on the CCTSDB 2021 dataset,the method achieves precision,recall,and Map0.5 scores of 91.49%,73.79%,and 81.03%,respectively.Experimental results revealed that the proposed method had superior performance compared to conventional models,which includes the faster region-based convolutional neural network,single shot multibox detector,and you only look once version 5.
文摘Aiming at solving the problem of missed detection and low accuracy in detecting traffic signs in the wild, an improved method of YOLOv8 is proposed. Firstly, combined with the characteristics of small target objects in the actual scene, this paper further adds blur and noise operation. Then, the asymptotic feature pyramid network (AFPN) is introduced to highlight the influence of key layer features after feature fusion, and simultaneously solve the direct interaction of non-adjacent layers. Experimental results on the TT100K dataset show that compared with the YOLOv8, the detection accuracy and recall are higher. .
基金supported in part by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education under Grant NRF-2019R1A2C1006159 and Grant NRF-2021R1A6A1A03039493in part by the 2022 Yeungnam University Research Grant.
文摘Globally traffic signs are used by all countries for healthier traffic flow and to protect drivers and pedestrians.Consequently,traffic signs have been of great importance for every civilized country,which makes researchers give more focus on the automatic detection of traffic signs.Detecting these traffic signs is challenging due to being in the dark,far away,partially occluded,and affected by the lighting or the presence of similar objects.An innovative traffic sign detection method for red and blue signs in color images is proposed to resolve these issues.This technique aimed to devise an efficient,robust and accurate approach.To attain this,initially,the approach presented a new formula,inspired by existing work,to enhance the image using red and green channels instead of blue,which segmented using a threshold calculated from the correlational property of the image.Next,a new set of features is proposed,motivated by existing features.Texture and color features are fused after getting extracted on the channel of Red,Green,and Blue(RGB),Hue,Saturation,and Value(HSV),and YCbCr color models of images.Later,the set of features is employed on different classification frameworks,from which quadratic support vector machine(SVM)outnumbered the others with an accuracy of 98.5%.The proposed method is tested on German Traffic Sign Detection Benchmark(GTSDB)images.The results are satisfactory when compared to the preceding work.
文摘To pursue the ideal of a safe high-tech society in a time when traffic accidents are frequent,the traffic signs detection system has become one of the necessary topics in recent years and in the future.The ultimate goal of this research is to identify and classify the types of traffic signs in a panoramic image.To accomplish this goal,the paper proposes a new model for traffic sign detection based on the Convolutional Neural Network for com-prehensive traffic sign classification and Mask Region-based Convolutional Neural Networks(R-CNN)implementation for identifying and extracting signs in panoramic images.Data augmentation and normalization of the images are also applied to assist in classifying better even if old traffic signs are degraded,and considerably minimize the rates of discovering the extra boxes.The proposed model is tested on both the testing dataset and the actual images and gets 94.5%of the correct signs recognition rate,the classification rate of those signs discovered was 99.41%and the rate of false signs was only around 0.11.
基金supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055)the National Key R&D Program of China(2021YFB2600502).
文摘Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team (2008)Program for New Centoury Excellent Talents in University(NCET-09-0045)+1 种基金the National Nat-ural Science Foundation of China (60773044,61004059)the Natural Science Foundation of Beijing(4101001)
文摘Recognizing various traffic signs,especially the popular circular traffic signs,is an essential task for implementing advanced driver assistance system.To recognize circular traffic signs with high accuracy and robustness,a novel approach which uses the so-called improved constrained binary fast radial symmetry(ICBFRS) detector and pseudo-zernike moments based support vector machine(PZM-SVM) classifier is proposed.In the detection stage,the scene image containing the traffic signs will be converted into Lab color space for color segmentation.Then the ICBFRS detector can efficiently capture the position and scale of sign candidates within the scene by detecting the centers of circles.In the classification stage,once the candidates are cropped out of the image,pseudo-zernike moments are adopted to represent the features of extracted pictogram,which are then fed into a support vector machine to classify different traffic signs.Experimental results under different lighting conditions indicate that the proposed method has robust detection effect and high classification accuracy.
文摘The infrastructure and construction of roads are crucial for the economic and social development of a region,but traffic-related challenges like accidents and congestion persist.Artificial Intelligence(AI)and Machine Learning(ML)have been used in road infrastructure and construction,particularly with the Internet of Things(IoT)devices.Object detection in Computer Vision also plays a key role in improving road infrastructure and addressing trafficrelated problems.This study aims to use You Only Look Once version 7(YOLOv7),Convolutional Block Attention Module(CBAM),the most optimized object-detection algorithm,to detect and identify traffic signs,and analyze effective combinations of adaptive optimizers like Adaptive Moment estimation(Adam),Root Mean Squared Propagation(RMSprop)and Stochastic Gradient Descent(SGD)with the YOLOv7.Using a portion of German traffic signs for training,the study investigates the feasibility of adopting smaller datasets while maintaining high accuracy.The model proposed in this study not only improves traffic safety by detecting traffic signs but also has the potential to contribute to the rapid development of autonomous vehicle systems.The study results showed an impressive accuracy of 99.7%when using a batch size of 8 and the Adam optimizer.This high level of accuracy demonstrates the effectiveness of the proposed model for the image classification task of traffic sign recognition.
文摘Traffic sign recognition (TSR, or Road Sign Recognition, RSR) is one of the Advanced Driver Assistance System (ADAS) devices in modern cars. To concern the most important issues, which are real-time and resource efficiency, we propose a high efficiency hardware implementation for TSR. We divide the TSR procedure into two stages, detection and recognition. In the detection stage, under the assumption that most German traffic signs have red or blue colors with circle, triangle or rectangle shapes, we use Normalized RGB color transform and Single-Pass Connected Component Labeling (CCL) to find the potential traffic signs efficiently. For Single-Pass CCL, our contribution is to eliminate the “merge-stack” operations by recording connected relations of region in the scan phase and updating the labels in the iterating phase. In the recognition stage, the Histogram of Oriented Gradient (HOG) is used to generate the descriptor of the signs, and we classify the signs with Support Vector Machine (SVM). In the HOG module, we analyze the required minimum bits under different recognition rate. The proposed method achieves 96.61% detection rate and 90.85% recognition rate while testing with the GTSDB dataset. Our hardware implementation reduces the storage of CCL and simplifies the HOG computation. Main CCL storage size is reduced by 20% comparing to the most advanced design under typical condition. By using TSMC 90 nm technology, the proposed design operates at 105 MHz clock rate and processes in 135 fps with the image size of 1360 × 800. The chip size is about 1 mm2 and the power consumption is close to 8 mW. Therefore, this work is resource efficient and achieves real-time requirement.
基金National Natural Science Foundation of China,U20A20331,Long Chen.
文摘Traffic sign detection is a crucial task for autonomous driving systems.However,the performance of deep learning-based algorithms for traffic sign detection is highly affected by the illumination conditions of scenarios.While existing algo-rithms demonstrate high accuracy in well-lit environments,they suffer from low accuracy in low-light scenarios.This paper proposes an end-to-end framework,LLTH-YOLOv5,specifically tailored for traffic sign detection in low-light scenarios,which enhances the input images to improve the detection performance.The proposed framework comproses two stages:the low-light enhancement stage and the object detection stage.In the low-light enhancement stage,a lightweight low-light enhancement network is designed,which uses multiple non-reference loss functions for parameter learning,and enhances the image by pixel-level adjustment of the input image with high-order curves.In the object detection stage,BIFPN is introduced to replace the PANet of YOLOv5,while designing a transformer-based detection head to improve the accuracy of small target detection.Moreover,GhostDarkNet53 is utilized based on Ghost module to replace the backbone network of YOLOv5,thereby improving the real-time performance of the model.The experimental results show that the proposed method significantly improves the accuracy of traffic sign detection in low-light scenarios,while satisfying the real-time requirements of autonomous driving.
文摘交通标志辅助识别技术在自动驾驶体系中越发重要,由于不同的硬件设备承载力不同,使模型更轻量化的同时保持性能不变或更好成为当下各单位和企业的研究方向之一。为了使模型更轻量化的同时提升模型识别效果和检测速度,提出一种基于SWimAM(a simple,parameter-free attention module add weight part for convolutional neural networks)设计YOLOv5(you only look once version 5)的轻量化交通标志检测方法。该方法基于SimAM机制加入可迭代学习权重改变内部权重的计算方式提出SWimAM模块,并将YOLOv5的backbone结构中的C3层替换成该模块,将head部分融合SE(squeeze-and-excitation networks)注意力机制的同时把损失函数替换为SIoU(soft intersection over union)强化了模型的检测精度减少了梯度的不稳定性。提出一种滤波拼接的数据增强方法扩充了TT100K交通标志数据集,解决了部分标签不均匀的问题。改进的YOLOv5s网络的在TT100K上识别平均精度提升2.5%、检测速度提升7.33%、计算复杂度下降3.07%、参数量下降9.27%。在中国交通标志检测数据集CCTSDB中和德国交通GTSDB数据集中平均精度分别达到94.9%和94.7%,验证了该模型具有良好的泛化性。