Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significan...Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significantly over the world.In this paper,a novel method for intelligent traffic surveillance is presented.The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes.To improve the results,mean-shift clustering was applied to the segmented images.Afterward,the pixels given the label for the vehicle were extracted and blob detection was applied to mark each vehicle.For the validation of each detection,a vehicle verification method based on the structural similarity index is proposed.The tracking of vehicles across the image frames is done using the Identifier(ID)assignment technique and particle filter.Also,vehicle counting in each frame along with trajectory estimation was done for each object.Our proposed system demonstrated a remarkable vehicle detection rate of 0.83 over Vehicle Aerial Imaging from Drone(VAID),0.86 over AU-AIR,and 0.75 over the Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)dataset during the experimental evaluation.The proposed system can be used for several purposes,such as vehicle identification in traffic,traffic density estimation at intersections,and traffic congestion sensing on a road.展开更多
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
基金supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)Support Program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation).The funding of this work was provided by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R410),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Road congestion,air pollution,and accident rates have all increased as a result of rising traffic density andworldwide population growth.Over the past ten years,the total number of automobiles has increased significantly over the world.In this paper,a novel method for intelligent traffic surveillance is presented.The proposed model is based on multilabel semantic segmentation using a random forest classifier which classifies the images into five classes.To improve the results,mean-shift clustering was applied to the segmented images.Afterward,the pixels given the label for the vehicle were extracted and blob detection was applied to mark each vehicle.For the validation of each detection,a vehicle verification method based on the structural similarity index is proposed.The tracking of vehicles across the image frames is done using the Identifier(ID)assignment technique and particle filter.Also,vehicle counting in each frame along with trajectory estimation was done for each object.Our proposed system demonstrated a remarkable vehicle detection rate of 0.83 over Vehicle Aerial Imaging from Drone(VAID),0.86 over AU-AIR,and 0.75 over the Unmanned Aerial Vehicle Benchmark Object Detection and Tracking(UAVDT)dataset during the experimental evaluation.The proposed system can be used for several purposes,such as vehicle identification in traffic,traffic density estimation at intersections,and traffic congestion sensing on a road.
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.