期刊文献+
共找到273篇文章
< 1 2 14 >
每页显示 20 50 100
基于深度学习的交警动态手势检测与识别方法研究
1
作者 刘永涛 刘永杰 +4 位作者 孙斐然 徐鑫 曾凯凯 袁诗泉 乔洁 《武汉理工大学学报(交通科学与工程版)》 2024年第3期441-447,共7页
文中基于深度学习方法设计了交警动态手势检测与识别算法,以Top-down的姿态估计方法获取交警人物关键点建立人体骨架图,采用时空图卷积的方式进行动作识别.设计交警目标检测算法、交警姿态估计算法和交警动态手势识别算法,对输入模型的... 文中基于深度学习方法设计了交警动态手势检测与识别算法,以Top-down的姿态估计方法获取交警人物关键点建立人体骨架图,采用时空图卷积的方式进行动作识别.设计交警目标检测算法、交警姿态估计算法和交警动态手势识别算法,对输入模型的骨架图设计了尺寸归一化,令算法对不同尺寸的骨架图具有相同的识别性能,提高了算法的鲁棒性.所设计的方法在限制容许错误率在10%、15%、25%以及50%的条件下能够达到最高96.32%的识别率. 展开更多
关键词 交警手势 深度学习目标检测 手势识别 姿态估计
下载PDF
基于改进YOLOv8的交通监控车辆检测算法 被引量:4
2
作者 周飞 郭杜杜 +4 位作者 王洋 王庆庆 秦音 杨卓敏 贺海军 《计算机工程与应用》 CSCD 北大核心 2024年第6期110-120,共11页
针对目前复杂交通监控场景下车辆检测精度不足、检测速度慢的问题,提出一种基于YOLOv8模型的轻量级车辆检测算法。采用FasterNet替换YOLOv8的骨干特征提取网络,减少了冗余计算和内存访问,提高了模型的检测精度和推理速度;在Backbone和N... 针对目前复杂交通监控场景下车辆检测精度不足、检测速度慢的问题,提出一种基于YOLOv8模型的轻量级车辆检测算法。采用FasterNet替换YOLOv8的骨干特征提取网络,减少了冗余计算和内存访问,提高了模型的检测精度和推理速度;在Backbone和Neck部分添加SimAM注意力模块,在不增加原始网络参数的同时增强了目标车辆的重要特征,提高了模型的特征融合能力;针对密集车流下小尺寸车辆检测效果不佳的问题,添加小目标检测头,更好地捕获小尺寸车辆的特征和上下文信息;使用可自适应调整权重系数的Wise-IoU作为改进模型的损失函数,提升了边界框的回归性能和检测的鲁棒性。在UA-DETRAC数据集的实验结果表明,相较于原模型,改进方法在交通监控系统中能够达到较好的检测精度和速度,mAP和FPS分别提高了3.06个百分点和3.36%,有效改善了复杂交通场景下小目标车辆检测效果不佳的问题,并在精度和速度之间取得了很好的平衡。 展开更多
关键词 车辆检测 交通监控 YOLOv8 小目标检测 注意力机制
下载PDF
基于轻量化YOLOv8s交通标志的检测 被引量:3
3
作者 朱强军 胡斌 +1 位作者 汪慧兰 王杨 《图学学报》 CSCD 北大核心 2024年第3期422-432,共11页
为了提高交通标志检测的实时性和可行性,提出了一种基于YOLOv8s的轻量化交通标志检测模型。首先,用FasterNet中的残差模块FasterNetBlock替换C2f模块中的BottleNeck,降低模型参数量和计算量;其次,用一种小目标检测层去替换大目标检测层... 为了提高交通标志检测的实时性和可行性,提出了一种基于YOLOv8s的轻量化交通标志检测模型。首先,用FasterNet中的残差模块FasterNetBlock替换C2f模块中的BottleNeck,降低模型参数量和计算量;其次,用一种小目标检测层去替换大目标检测层,降低Backbone中网络层数,实现大幅度提高检测速度和降低参数量;最后,用Wise-IOU替换原CIOU损失函数,提高速度和精度。在TT100K交通标志数据集上验证,其与YOLOv8s模型比较,mAP50提高了5.16%,参数量降低了76.48%,计算量降低了13.33%,FPS快了35.83%。与其他模型相比,mAP50平均提高了15.11%,参数量平均降低了85.74%,计算量平均下降了46.23%,FPS平均提高了31.49%。该模型具有检测精度高、参数量少、计算量低、速度快等优点,较原算法有很大地提升,且与其他先进的交通标志检测模型比较时表现出了很强的竞争力,在交通标志检测中具有较大优势。 展开更多
关键词 轻量化 YOLOv8s 改进小目标层 交通标志检测 Wise-IOU TT100K
下载PDF
基于YOLO模型的车流量实时采集系统研究
4
作者 王金环 李宝敏 《计算机技术与发展》 2024年第9期209-214,共6页
对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车... 对于一座现代化城市来说,合理的交通规划是一个城市高效运行的关键,作为交通规划的关键信息的城市车流量信息,原本需要人工进行识别、获取、验证的提取方式,随着计算机视觉技术的蓬勃发展弊端尽显,终将退出历史的舞台。为了提高城市车流量信息的准确性和及时性,利用现有的计算机技术设计一种基于YOLO模型的车流量实时采集系统。该系统基于YOLO视觉检测模型,采用DeepSORT算法对检测到的目标车辆进行跟踪识别、判断车辆的运行状态、实现当前路段的车流量统计、对已记录车流量信息进行可视化展示以及数据输出等。该系统可以有效地代替传统消耗人力的死板工作,实现自动化数据收集以及道路交通情况的快速监测。该系统操作简单,交互性强,为城市的交通管理和交通规划提供准确实时的信息数据。 展开更多
关键词 目标检测 目标跟踪算法 数据处理 YOLO模型 车流量 实时采集
下载PDF
基于Cache-DCN YOLOX算法的交通标志检测方法研究 被引量:1
5
作者 高尉峰 王如刚 +2 位作者 王媛媛 周锋 郭乃宏 《计算机测量与控制》 2024年第2期71-77,84,共8页
针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种基于Cache-DCN YOLOX算法的交通标志识别方法;在该方法中,使用DCN可变形卷积替换backbone中的普通卷积,有效地增大了模型的感受野,提高了特征提取能力;使用EIoU损失函... 针对传统方式识别交通标志算法存在的检测精度较低的问题,提出了一种基于Cache-DCN YOLOX算法的交通标志识别方法;在该方法中,使用DCN可变形卷积替换backbone中的普通卷积,有效地增大了模型的感受野,提高了特征提取能力;使用EIoU损失函数代替YOLOX中的GIoU损失函数,优化了训练模型,提高了收敛的速度;优化设计了YOLOX算法中的强弱两阶段的训练过程,增强了模型的泛化性能,同时加入cache方案,进一步提高了检测精度;在交通标志数据集TT100K上进行了实验,提出方法的检测精度为67.2%,比原YOLOX算法的检测精度提升了6.4%,同时,在被遮挡的小目标等多种受干扰的环境下,提出的方法能够精确地检测出交通标志,并有着较好的置信度,满足实际需求。 展开更多
关键词 深度学习 YOLOX 交通标志识别 可变形卷积 小目标检测
下载PDF
基于改进YOLOv7-Tiny的交通多目标检测方法
6
作者 许文娟 李野 +1 位作者 江晟 王博文 《长春理工大学学报(自然科学版)》 2024年第2期75-83,共9页
在复杂的多目标交通环境中存在检测种类多、背景信息繁杂、图像分辨率低不能有效检测等问题,使用常见的目标检测算法不能达到高精度的实时检测效果,因此提出一种改进YOLOv7-Tiny的交通多目标检测算法。改进算法中首先使用部分卷积——PC... 在复杂的多目标交通环境中存在检测种类多、背景信息繁杂、图像分辨率低不能有效检测等问题,使用常见的目标检测算法不能达到高精度的实时检测效果,因此提出一种改进YOLOv7-Tiny的交通多目标检测算法。改进算法中首先使用部分卷积——PConv替换原始卷积,优化模型参数量和运行速度;其次采用轻量级算子CARAFE替换原有上采样部分的最临近插值,提升特征融合能力;最后采用EfficiCLoss替换原有损失函数,提高边界框的定位精度改善检测目标因遮挡而漏检问题。此外创建一个基于交通复杂场景的多目标数据集,在此数据集上进行实验,结果表明改进后的检测算法相较于原YOLOv7-Tiny网络的mAP提高了4.3%,检测速度提高了12.5%,参数量减少了30%,满足智慧交通实时检测的要求。 展开更多
关键词 交通目标检测 YOLOv7-Tiny Faster-Net EfficiCLoss
下载PDF
改进YOLOv8算法的交通标志小目标检测
7
作者 赵会鹏 曹景胜 +1 位作者 潘迪敬 李刚 《现代电子技术》 北大核心 2024年第20期141-147,共7页
针对传统网络模型在交通标志检测方面存在的小目标识别不准确的问题,提出一种改进的Ghost-YOLOv8交通标志检测模型。首先,使用GhostConv代替了全部Conv,并设计全新的GhostC2f模块来替代全部的C2f,使模型轻量化;其次,将上采样算法替换为C... 针对传统网络模型在交通标志检测方面存在的小目标识别不准确的问题,提出一种改进的Ghost-YOLOv8交通标志检测模型。首先,使用GhostConv代替了全部Conv,并设计全新的GhostC2f模块来替代全部的C2f,使模型轻量化;其次,将上采样算法替换为CARAFE,以更好地保留图像的细节信息;然后,在Neck部分引入了GAM注意力机制模块,以增强特征中的语义信息和位置信息;最后,为了解决检测小目标时尺度不一致导致的语义信息丢失问题,添加了小目标检测层,以增强深层和浅层语义信息的融合。实验结果证明,该模型在中国交通标志检测数据集TT100K中的召回率、mAP@0.5、mAP@0.5:0.95指标分别提高了6.8%、4.0%、3.6%,并且模型的参数量及模型大小分别降低了1.069×10^(6)、1.9 MB。综合说明,所提出的模型在精准度不变的前提下,减少了模型的参数量及大小,并能更好地检测到原模型检测不到的小目标;同时,比对比算法具有更好的性能表现,并且适用于边缘计算设备,具有实际应用价值。 展开更多
关键词 YOLOv8 交通标志 小目标检测 GhostNet CARAFE GhostC2f GAM注意力机制
下载PDF
基于改进YOLOv5 的交通标志小目标检测算法 被引量:1
8
作者 刘振渤 李慧 +1 位作者 刘桥缘 胡蓉 《现代信息科技》 2024年第1期94-98,103,共6页
针对交通标志小目标和密集目标检测准确率不高的问题,提出了改进YOLOv5s的检测模型。在Backbone网络中添加ECA注意力机制增强小目标交通标志特征信息提取能力;其次采用SPPCSPC结构减少小目标交通标志信息丢失;再使用BiFPN网络融合多尺... 针对交通标志小目标和密集目标检测准确率不高的问题,提出了改进YOLOv5s的检测模型。在Backbone网络中添加ECA注意力机制增强小目标交通标志特征信息提取能力;其次采用SPPCSPC结构减少小目标交通标志信息丢失;再使用BiFPN网络融合多尺特征信息,增强融合感知能力;最后将WIoU作为训练时模型的损失函数,降低背景的过度干扰,提升交通标志检测的准确性。试验结果表明,改进后算法的准确率为93.3%、mAP值为92.7%,较未改进前分别提高了2.2%、1.7%。 展开更多
关键词 交通标志小目标 YOLOv5s ECA注意力机制 SPPCSPC模块 WIoU loss
下载PDF
基于CF-YOLO的雾霾交通标志识别
9
作者 吴攀超 郑卓纹 +1 位作者 王婷婷 孙琦 《计算机工程与设计》 北大核心 2024年第7期2203-2211,共9页
针对现有交通标志检测模型在雾霾环境下出现漏检、错检以及参数较大等问题,设计一种基于YOLOv5s改进的CF-YOLO检测模型。为加强在雾霾环境中对交通标志的检测能力,提出一种基于颜色衰减先验的自适应伽马变换图像预处理算法;为增强对目... 针对现有交通标志检测模型在雾霾环境下出现漏检、错检以及参数较大等问题,设计一种基于YOLOv5s改进的CF-YOLO检测模型。为加强在雾霾环境中对交通标志的检测能力,提出一种基于颜色衰减先验的自适应伽马变换图像预处理算法;为增强对目标的定位能力及检测精度,将坐标注意力机制融合到网络中;为实现模型轻量化,引入FasterNetBlock构建网络。实验结果表明,改进算法在雾霾环境下交通标志检测相比原YOLOv5模型权重减少了2.3 MB,精度提高了8.5个百分点。 展开更多
关键词 交通标志识别 目标检测 卷积神经网络 坐标注意力机制 颜色衰减先验 伽马变换 深度学习
下载PDF
基于改进YOLOv5算法的道路交通参与者实时检测方法
10
作者 张逸凡 聂琳真 +1 位作者 黄灏然 尹智帅 《交通信息与安全》 CSCD 北大核心 2024年第1期115-123,共9页
从道路监控图像中快速准确地检测交通参与者对于智能交通系统监管道路目标具有重要意义。为解决传统YOLOv5目标检测算法对多种交通参与者目标检测精度低、重叠目标漏检等问题,研究了基于改进YOLOv5算法的道路交通参与者实时检测方法。... 从道路监控图像中快速准确地检测交通参与者对于智能交通系统监管道路目标具有重要意义。为解决传统YOLOv5目标检测算法对多种交通参与者目标检测精度低、重叠目标漏检等问题,研究了基于改进YOLOv5算法的道路交通参与者实时检测方法。为增强浅层网络提取图像特征信息能力,采用融合移动翻转瓶颈卷积(FusedMBC)代替原卷积结构,并通过自注意力机制学习交通参与者的纹理特征;为加强主干网络感知图像空间特征信息的能力,引入坐标注意力机制(CA),使主干网络更加关注图像中交通参与者的语义特征;为使普通卷积拥有感知构造能力,以增强激活空间的灵敏度,采用漏斗激活函数(FReLU)作为卷积层的激活函数,并能够使特征向量进行像素级建模;为增强网络对密集目标的空间特征信息提取能力,在特征融合网络中加入坐标注意力机制,通过注意力捕捉密集目标融合后的空间与通道特征信息,让网络精确定位各个目标。通过对车路协同自动驾驶数据集DAIR-V2X的交通参与者图像进行数据增强预处理,构建用于验证模型性能的测试集2000张并进行了算法验证。实验结果表明:①改进后的YOLOv5算法平均检测精度达到82.4%,平均召回率达到95%,平均检测速度达到204帧/s。②相比于原始YOLOv5,其在平均检测精度和平均检测速度分别提高了5.8%和33.3%,证实提出的方法能够实现快速准确地检测交通参与者,有助于提升智能交通系统监管交通参与者的能力。 展开更多
关键词 智能交通 交通目标 交通参与者检测 YOLOv5 融合移动翻转瓶颈卷积 坐标注意力机制
下载PDF
基于改进YOLOv5s的交通标识检测算法 被引量:3
11
作者 李孟浩 袁三男 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2024年第1期11-19,共9页
针对交通标识在图像中占比小、检测精度低且周围环境复杂等问题,提出一种基于改进YOLOv5s的算法.首先,在主干网络部分添加注意力机制ECA(Efficient Channel Attention,高效通道注意力),增强网络的特征提取能力,有效解决了周围环境复杂... 针对交通标识在图像中占比小、检测精度低且周围环境复杂等问题,提出一种基于改进YOLOv5s的算法.首先,在主干网络部分添加注意力机制ECA(Efficient Channel Attention,高效通道注意力),增强网络的特征提取能力,有效解决了周围环境复杂的问题;其次,提出HASPP(Hybrid Atrous Spatial Pyramid Pooling,混合空洞空间金字塔池化),增强了网络结合上下文的能力;最后,修改网络中的Neck结构,使高层特征与底层特征有效融合,同时避免了跨卷积层造成的信息丢失.实验结果表明,改进后的算法在交通标识数据集上取得了94.4%的平均检测精度、74.1%的召回率以及94.0%的精确率,较原始算法分别提升了3.7、2.8、3.4个百分点. 展开更多
关键词 交通标识检测 小目标检测 YOLOv5s 注意力机制 特征提取 混合空洞空间金字塔池化
下载PDF
基于交通标志的小目标检测
12
作者 曾天豪 陈琳 《激光杂志》 CAS 北大核心 2024年第3期100-105,共6页
针对小目标检测算法在交通标志识别上的精度较低和误检等问题,提出一种前景融合注意力机制网络YOLO-Traffic。先引入EIOU损失函数,分别计算预测框和真实框的宽度,再利用空洞卷积来解决原模型CIOU存在的问题;其次,添加前景注意力机制F-E... 针对小目标检测算法在交通标志识别上的精度较低和误检等问题,提出一种前景融合注意力机制网络YOLO-Traffic。先引入EIOU损失函数,分别计算预测框和真实框的宽度,再利用空洞卷积来解决原模型CIOU存在的问题;其次,添加前景注意力机制F-ECA,充分提取前景相关信息,抑制背景噪声;最后使用Kmeans++算法代替Kmeans聚类得到的锚框进行重新分配相应的特征层,进一步提高特征提取能力。在清华大学制作的TT100K交通标志数据集上实验得出,对比原YOLOv5网络,精度提升了2.91%,召回率提升了2.1%,检测速度为44帧每秒,最终精度达到96.89%。因此,所提出的YOLO-Traffic网络可以提升交通标志检测精度和模型性能。 展开更多
关键词 小目标检测 前景注意力 交通标志 空洞卷积
下载PDF
基于改进YOLOv5s的图像融合交通检测方法
13
作者 江晟 王博文 许文娟 《长春理工大学学报(自然科学版)》 2024年第2期66-74,共9页
针对复杂交通环境下YOLOv5s模型识别精度低、网络模型参数量大的问题,提出一种基于红外图像和可见光图像特征融合的行人与车辆目标检测算法。基于YOLOv5s算法进行改进,首先,使用渐进式图像融合网络生成可见光与红外图像数据集;其次,在... 针对复杂交通环境下YOLOv5s模型识别精度低、网络模型参数量大的问题,提出一种基于红外图像和可见光图像特征融合的行人与车辆目标检测算法。基于YOLOv5s算法进行改进,首先,使用渐进式图像融合网络生成可见光与红外图像数据集;其次,在特征融合部分采用GSConv卷积替换原始卷积,减少模型参数量和计算量,并且引入CA位置注意力机制,使网络更加关注位置信息;采用EIOU-Loss损失函数替换原始损失函数,加快收敛速度提高回归精度;最后,在M3FD数据集上对行人与车辆进行目标检测识别实验。实验结果表明,对于复杂背景的红外条件下的交通检测,改进后的YOLOv5s相较于原始网络的mAP提升了11.6%,模型大小减少了4.20%,参数量减少了8.05%,检测速度提升了9.09%。 展开更多
关键词 红外与可见光图像 目标检测 图像融合 注意力机制
下载PDF
基于多注意力的改进YOLOv5s小目标检测算法
14
作者 马鸽 李洪伟 +2 位作者 严梓维 刘志杰 赵志甲 《工程科学学报》 EI CSCD 北大核心 2024年第9期1647-1658,共12页
交通标志识别应用中待检测目标多为小目标,因其携带信息少、定位精度要求高、易被环境噪声淹没等特点成为当前交通标志检测的难点.针对小目标交通标志漏检、误检、检测准确率低等问题,本文设计了一种用于小目标检测的STDYOLOv5s(Small t... 交通标志识别应用中待检测目标多为小目标,因其携带信息少、定位精度要求高、易被环境噪声淹没等特点成为当前交通标志检测的难点.针对小目标交通标志漏检、误检、检测准确率低等问题,本文设计了一种用于小目标检测的STDYOLOv5s(Small target detection YOLOv5s)模型.首先,通过增加上采样和Prediction输出层数获得了更丰富的位置信息,解决了YOLOv5s模型在处理小目标时信息不足的问题,增强了对图像的全局理解能力;其次,在每个C3模块之后添加CA(Coordinate attention)注意力机制并在每个输出层前添加Swin-T注意力机制模块,增加了网络对多层特征信息的捕捉,提高了小目标的检测性能;最后,充分利用SIoU惩罚函数同时考虑目标形状、空间关系的特点,更好地捕捉不同尺寸的目标在图像中的位置关系,提高目标位置的精确性.所提模型在TT100K数据集上进行了验证实验,实验结果表明本文方法不仅保持了YOLOv5s模型的轻量性和快速性,在精确率、召回率和平均精度三个指标上也有所提升,提高了小目标检测的精确性. 展开更多
关键词 小目标检测 交通标志识别 注意力机制 YOLOv5s 深度学习
下载PDF
基于集中式特征金字塔的交通标志识别
15
作者 李文举 刘子琼 +1 位作者 张干 崔柳 《计算机仿真》 2024年第8期118-126,共9页
针对目前交通标志识别技术中存在的畸变目标、小目标检测难等问题,提出一种基于集中式特征金字塔的交通标志识别算法。首先,使用集中式特征金字塔改进原始的特征融合网络,用轻量级多层感知机(MLP)来捕获全局远程依赖,通过可学习视觉中... 针对目前交通标志识别技术中存在的畸变目标、小目标检测难等问题,提出一种基于集中式特征金字塔的交通标志识别算法。首先,使用集中式特征金字塔改进原始的特征融合网络,用轻量级多层感知机(MLP)来捕获全局远程依赖,通过可学习视觉中心机制(LVC)来捕获输入图像的局部角区域,提高了对畸变目标以及小目标的检测精度;其次,使用递归门控卷积提取浅层特征图的高阶空间交互信息,改善对小目标的检测效果;最后,使用SIoU回归损失函数,引入角度损失,重新定义惩罚指标,减少总损失的自由度,防止预测框在训练时四处游荡,加快收敛速度,使定位更加精确。在TT100K数据集上平均检测精度为93.4%,和传统的YOLOv5n相比精度提升了3.5个百分点,帧处理速度达到94.34fps。 展开更多
关键词 集中式特征金字塔 递归门控卷积 交通标志识别 目标检测
下载PDF
面向微型交通标志的ASPC-YOLOv8检测算法
16
作者 陈其彬 邓涛 +4 位作者 杨志军 汪世豪 李彦波 韩振宇 陈梓山 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期55-60,共6页
针对在部分遮挡和复杂背景下的微型交通标志误检、漏检等问题,提出一种基于YOLOv8s的交通标志检测框架。构建空间自适应金字塔卷积模块(ASPC)代替Neck所有Conv模块,设计全新的ASPC2f模块代替部分C2f模块,减少了模型参数量,提升了检测性... 针对在部分遮挡和复杂背景下的微型交通标志误检、漏检等问题,提出一种基于YOLOv8s的交通标志检测框架。构建空间自适应金字塔卷积模块(ASPC)代替Neck所有Conv模块,设计全新的ASPC2f模块代替部分C2f模块,减少了模型参数量,提升了检测性能;为解决在检测小目标时因尺度不一致而导致的语义信息损失问题,引入小目标检测层,以增强深层和浅层语义信息的有效融合;使用EIOU代替原来的边界框损失函数,提升网络边界框回归性能。经实验,该方法在TT100K交通标志数据集上平均精度均值(mAP)达到89.7%,相较于原模型提升6.2个百分点,微型目标平均精度均值相对提升9.4个百分点,参数量降低2.6 MB。 展开更多
关键词 交通标志检测 小目标检测 空间金字塔卷积 特征融合
下载PDF
基于数据挖掘的智能驾驶小目标检测研究
17
作者 王嘉月 《长春工程学院学报(自然科学版)》 2024年第3期122-128,共7页
小目标检测是智能驾驶安全领域的重要研究内容,其中交通标志的检测是智能驾驶环境感知的关键环节,但由于交通标志的判定属于远距离识别且目标较小,因此往往会出现漏检或识别精度低的问题。基于Faster R-CNN算法将骨干网络VGG16替换为Res... 小目标检测是智能驾驶安全领域的重要研究内容,其中交通标志的检测是智能驾驶环境感知的关键环节,但由于交通标志的判定属于远距离识别且目标较小,因此往往会出现漏检或识别精度低的问题。基于Faster R-CNN算法将骨干网络VGG16替换为ResNet50,将混合注意力机制融入主干残差结构,利用多尺度滑动窗口改进RPN网络,在不同深度卷积层生成特征图并进行特征融合。改进后的算法使检测精度mAP从85.99%变为94.38%,有效地提高了智能驾驶场景下识别交通标志小目标的能力。 展开更多
关键词 交通标志 小目标 Faster R-CNN
下载PDF
基于网络流跟踪的信号灯检测方法
18
作者 武悦 陈海华 于乔烽 《计算机应用研究》 CSCD 北大核心 2024年第2期609-615,622,共8页
结合信号灯信息对机动车行进速度进行引导,减少机动车启停次数,可有效减少废气排放,缓解其造成的污染问题。针对信号灯转换时刻的获取问题,提出了一种基于网络流跟踪的信号灯检测方法。首先,该方法在数据集中引入辅助信号灯类别进行训练... 结合信号灯信息对机动车行进速度进行引导,减少机动车启停次数,可有效减少废气排放,缓解其造成的污染问题。针对信号灯转换时刻的获取问题,提出了一种基于网络流跟踪的信号灯检测方法。首先,该方法在数据集中引入辅助信号灯类别进行训练,将视频序列中该类目标检测结果关联为踪片,并通过踪片建模多目标跟踪任务。其次,该方法将多目标跟踪任务转换为最小费用流优化任务,以踪片作为节点建立最小费用流网络,提出了适合于信号灯的费用构建方式,通过最短路径算法求解,得到视频序列中辅助信号灯的多条轨迹。最后,基于求解的轨迹结果和图像分类技术,实现信号灯检测性能的提升。该方法的跟踪性能相较于对比算法有大幅提升,并将小目标信号灯检测响应的mAP提升至94.35%。实验结果表明,基于网络流的建模方式能极大地提升信号灯的跟踪准确率,结合跟踪轨迹还能大幅提高视频序列中小目标信号灯的检测准确率,并可有效确定信号灯状态的转换时刻。 展开更多
关键词 信号灯检测 帧间信息联合 多目标跟踪 费用流网络
下载PDF
基于改进YOLOv7的小目标交通标志检测算法
19
作者 郑娟毅 杨溥江 +2 位作者 郭梦月 董嘉豪 张庆珏 《中国电子科学研究院学报》 2024年第3期204-212,247,共10页
在自动驾驶中,检测小目标的精度和漏检问题对于车辆设备对路况判断的准确性至关重要。针对小交通标志检测精度漏检的问题,文中提出一种基于YOLOv7的小目标交通标志检测算法。在Neck中引入ACmix注意力模块,利用ACmix注意力模块提高网络... 在自动驾驶中,检测小目标的精度和漏检问题对于车辆设备对路况判断的准确性至关重要。针对小交通标志检测精度漏检的问题,文中提出一种基于YOLOv7的小目标交通标志检测算法。在Neck中引入ACmix注意力模块,利用ACmix注意力模块提高网络对小尺度目标的敏感度,降低噪声所带来的影响;在输出端引入多头自注意力机制SPD卷积构建块,提升输出端对交通标志小目标的检测性能;使用SIoU替换原始YOLOv7网络中的CIoU来优化损失函数,提高网络鲁棒性。为验证所提算法的性能,在CCTSDB交通标志数据集上进行了实验验证。实验结果表明,对于数据集中的小目标,改进后的YOLOv7网络相比于原始的YOLOv7网络,漏检情况得到了明显改善,且map达到了98.7%,运行速度达到了110.5 fps。相较于原始YOLOv7模型,精度和速度均有提升,可以满足交通标志检测的要求。 展开更多
关键词 交通标志检测 YOLOv7 小目标 SPD SIoU ACmix
下载PDF
基于机场活动地图信息改进AIMM-UKF算法的移动目标跟踪
20
作者 常鑫 马光辉 +1 位作者 高建树 郝世宇 《交通信息与安全》 CSCD 北大核心 2024年第2期87-94,104,共9页
针对机场场面高密度交通以及多类型移动目标的特殊性,为保证机场自动化设备如无人驾驶技术在机场内的应用,需要进一步优化定位算法来提高移动目标的跟踪精度;通过分析现有的自适应交互式多模型-无迹卡尔曼滤波跟踪算法(adaptive interac... 针对机场场面高密度交通以及多类型移动目标的特殊性,为保证机场自动化设备如无人驾驶技术在机场内的应用,需要进一步优化定位算法来提高移动目标的跟踪精度;通过分析现有的自适应交互式多模型-无迹卡尔曼滤波跟踪算法(adaptive interactive multi-model-unscented Kalman filter algorithm,AIMM-UKF)在移动目标跟踪过程中模型匹配度和跟踪精度上的不足,研究了1种基于机场活动地图信息改进的自适应交互式多模型-无迹卡尔曼滤波跟踪算法。根据机场地图数据库(airport map database,AMDB)细化的机场操作规程文件,通过ArcGIS软件对某机场施工CAD图简化处理并利用二次多项式配准法对机场地图进行精确校正,完成高精度机场地图修正,将接收到的机场智能监控设备采集到的数据进行实时处理,结合高精度机场地图信息对发生位置偏移的移动目标的坐标信息进行修正,改变移动目标跟踪算法的观测值,在自适应修正马尔可夫转移概率矩阵的基础上,利用观测矩阵对其进行二次修正,提高移动目标跟踪精度和模型匹配度。经蒙特卡洛仿真实验表明:该改进算法利用高精度机场地图信息对移动目标的观测值进行修正,与自适应修正马尔可夫转移概率矩阵的交互式多模型-无迹卡尔曼滤波算法相比,位置的均方根误差(root mean square error,RMSE)平均降低了62.69%,速度的RMSE平均降低了56.84%。本文算法具有更高的模型匹配度和更佳的滤波效果,提高了场面移动目标的跟踪精度。 展开更多
关键词 机场交通管控与运行 场面移动目标 机场地图数据库 AIMM-UKF 转移概率矩阵 观测矩阵
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部