Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite sh...Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.展开更多
This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil...This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.展开更多
Rising global energy demand has encouraged engineers to create and design new methods to improve oil recovery from reservoirs.In this study,feasibility of using Henna extract as a natural surfactant and synthesized na...Rising global energy demand has encouraged engineers to create and design new methods to improve oil recovery from reservoirs.In this study,feasibility of using Henna extract as a natural surfactant and synthesized nanoparticles(Titanium dioxide(TiO2),Silicon dioxide(SiO2),Graphene and composite of TiO2-Graphene)for reduction of oil-water interfacial tension has been experimentally investigated.Nanoparticles were synthesized via sol-gel method and XRD,FESEM,EDAX and FTIR tests were conducted to confirm the authenticity of this synthesizing materials.Nano-surfactants were stabled with a natural water-based suspending surfactant called Tragacanth extract,which could be introduced as a practical substitute for industrial nanoparticles'stabilizers in oil industry.After CMC determination of Henna extract surfactant,the optimal concentration of Tragacanth extract surfactant,with the purpose of nano-surfactants’stabilization,was determined through particle size and zeta potential tests.Results of interfacial tension(IFT)measurements showed that the increase of Henna extract concentration from 0 wt%to 10 wt%reduced IFT between kerosene and water from 37.23 to 15.24 mN/m.Furthermore,adding 1 wt%of synthesized TiO2 nanoparticle to the Henna extract surfactant at its CMC value reduced IFT from 18.43 to 14.57 mN/m.As an impact of this significant reduction in IFT value,oil recovery factor could be improved drastically during EOR operations.Results proved that TiO2 nano-surfactant was as effective as industrial surfactants,which put human's and environment's health at risk and impose heavy economic strain on governments.展开更多
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51664020)the Natural Science Foundation of Jiangxi Province,China(No.20202ACBL214010)+1 种基金Open Foundation of State Key Laboratory of Mineral Processing,China(No.BGRIMM-KJSKL-2020-12)Open Foundation of Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources,China(No.2018TP1002).
文摘Tragacanth gum(TG)was explored as a depressant to realize the flotation separation of molybdenite and talc.The flotation experiments indicated that when using potassium butyl xanthate(PBX)as a collector,molybdenite showed excellent floatability while talc was completely depressed by TG,thus realizing the flotation separation of the two minerals.X-ray photoelectron spectroscopy(XPS)analysis results showed that TG was adsorbed on molybdenite surface via chemisorption.The results of contact angle measurement,Fourier transform infrared(FTIR)spectroscopy,and time-of-flight secondary ion mass spectrometry(ToF-SIMS)indicated that the pre-adsorption of TG on molybdenite could not hinder the further chemisorption of PBX on molybdenite.Because PBX has no collecting ability on talc,the flotation separation of molybdenite and talc came true using PBX to collect molybdenite and TG to depress talc.
文摘This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.
文摘Rising global energy demand has encouraged engineers to create and design new methods to improve oil recovery from reservoirs.In this study,feasibility of using Henna extract as a natural surfactant and synthesized nanoparticles(Titanium dioxide(TiO2),Silicon dioxide(SiO2),Graphene and composite of TiO2-Graphene)for reduction of oil-water interfacial tension has been experimentally investigated.Nanoparticles were synthesized via sol-gel method and XRD,FESEM,EDAX and FTIR tests were conducted to confirm the authenticity of this synthesizing materials.Nano-surfactants were stabled with a natural water-based suspending surfactant called Tragacanth extract,which could be introduced as a practical substitute for industrial nanoparticles'stabilizers in oil industry.After CMC determination of Henna extract surfactant,the optimal concentration of Tragacanth extract surfactant,with the purpose of nano-surfactants’stabilization,was determined through particle size and zeta potential tests.Results of interfacial tension(IFT)measurements showed that the increase of Henna extract concentration from 0 wt%to 10 wt%reduced IFT between kerosene and water from 37.23 to 15.24 mN/m.Furthermore,adding 1 wt%of synthesized TiO2 nanoparticle to the Henna extract surfactant at its CMC value reduced IFT from 18.43 to 14.57 mN/m.As an impact of this significant reduction in IFT value,oil recovery factor could be improved drastically during EOR operations.Results proved that TiO2 nano-surfactant was as effective as industrial surfactants,which put human's and environment's health at risk and impose heavy economic strain on governments.