The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,...The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.展开更多
An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the L...An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the Leishman-Beddoes unsteady two-dimensional dynamic stall model and the aerodynamic loads of the trailing edge flap section are calculated by using the Hariharan-Leishman unsteady two-dimensional subsonic model.The analytical model for dynamic stall of elastic blade with the stiff trailing edge flap has been established.Adopting the aeroelastic analytical method and the Galerkin's method combined with numerical integration,the aeroelastic responses of rotor system in high-speed and high-load forward flight are solved.The mechanism for control of dynamic stall of retreating blade by using trailing edge flap has been presented.The numerical results indicate that the reasonably controlled swing of trailing edge flap can delay the dynamic stall of retreating blade under the same flight conditions.展开更多
基金the Hydra Technologies team in Mexicothe CREATEUTILI Program for their financial support。
文摘The seamless trailing edge morphing flap is investigated using a high-fidelity steady-state aerodynamic shape optimization to determine its optimum configuration for different flight conditions,including climb,cruise,and gliding descent.A comparative study is also conducted between a wing equipped with morphing flap and a wing with conventional hinged flap.The optimization is performed by specifying a certain objective function and the flight performance goal for each flight condition.Increasing the climb rate,extending the flight range and endurance in cruise,and decreasing the descend rate,are the flight performance goals covered in this study.Various optimum configurations were found for the morphing wing by determining the optimum morphing flap deflection for each flight condition,based on its objective function,each of which performed better than that of the baseline wing.It was shown that by using optimum configuration for the morphing wing in climb condition,the required power could be reduced by up to 3.8%and climb rate increases by 6.13%.The comparative study also revealed that the morphing wing enhances aerodynamic efficiency by up to 17.8%and extends the laminar flow.Finally,the optimum configuration for the gliding descent brought about a 43%reduction in the descent rate.
基金supported by the National Natural Science Foundation of China (Grant No. 5107520)the Fundamental Research Funds for the Central Universities (Grant No. NP2011057)
文摘An effective method for delaying the dynamic stall of helicopter retreating blade by using the trailing edge flap has been established in this paper.The aerodynamic loads of blade section are calculated by using the Leishman-Beddoes unsteady two-dimensional dynamic stall model and the aerodynamic loads of the trailing edge flap section are calculated by using the Hariharan-Leishman unsteady two-dimensional subsonic model.The analytical model for dynamic stall of elastic blade with the stiff trailing edge flap has been established.Adopting the aeroelastic analytical method and the Galerkin's method combined with numerical integration,the aeroelastic responses of rotor system in high-speed and high-load forward flight are solved.The mechanism for control of dynamic stall of retreating blade by using trailing edge flap has been presented.The numerical results indicate that the reasonably controlled swing of trailing edge flap can delay the dynamic stall of retreating blade under the same flight conditions.