The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This artic...The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.展开更多
Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices...Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.展开更多
In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was establis...In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.展开更多
There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a compreh...There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a comprehensive energy-saving optimization model of asynchronous motor for voltage regulation based on static synchronous compensator(STATCOM)is put forward.By analyzing the working principle and operation performance of static synchronous compensator regulating voltage,a new energy-efficient optimization method for asynchronous motor is proposed based on the voltage regulator model to achieve soft start,continuous dynamic reactive power compensation and the terminal voltage stability control.The multi-objective optimal operation of asynchronous motor is realized by controlling the inverter to adjust the reactive current dynamically.The strategy reduces the influence of starting current and grid voltage by soft starting,and realizes the function of reactive power compensation and terminal voltage stabilization.The effectiveness and superiority of the proposed model is verified by the simulation analysis and the results of comparison with the motor started directly.展开更多
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw...Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.展开更多
The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrate...The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.展开更多
The rapid development of China’s automobile industry has brought ever-increasing impact on resources,energy and environment,the energy-saving and new energy vehicles come into being accordingly.This article firstly s...The rapid development of China’s automobile industry has brought ever-increasing impact on resources,energy and environment,the energy-saving and new energy vehicles come into being accordingly.This article firstly systematically introduces the technical route of energy-saving and new energy vehicles of China,focusing on the key bottleneck problems arising from the construction process of current assessment system of the technical route for energy-saving and new energy vehicles,establishes the energy-saving and new energy vehicle business model assessment index system afterward based on the comparative analysis on energy-saving and new energy vehicle business assessment model and the full life cycle theory,and finally makes prospects and forecasts on vital problems of system boundary,dynamic optimization,simulation system of full life cycle assessment of energy-saving and new energy vehicle.展开更多
The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requireme...The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.展开更多
Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains u...Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered.展开更多
The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentio...The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.展开更多
Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-sup...Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.展开更多
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio...Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.展开更多
Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to e...Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.展开更多
Compared with a delta wing aircraft, the double delta wing configuration has better aerodynamic performance at high angles of attack. An operational analysis was introduced as a method for evaluating training effecti...Compared with a delta wing aircraft, the double delta wing configuration has better aerodynamic performance at high angles of attack. An operational analysis was introduced as a method for evaluating training effectiveness of trainer aircraft. Approaches to the engineering estimation of aerodynamic characteristics for aircraft with a double delta wing configuration were studied, and the procedures for determining aircraft performance indices formulated. Taking training effectiveness as the objective function and geometric parameters of the wing platform as design variables, through a numerical multivariate optimization arithmetic, the conceptual design optimization for a certain fighter trainer aircraft with double delta wing configuration was carried out under the constraints of tactical and technical requirements and interrelated geometry. Agreement of a calculation example with engineering practice indicates that the optimal design has higher training effectiveness than the baseline design, and in addition, improves the structural force bearing conditions.展开更多
The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of t...The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly.展开更多
The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress o...The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model.展开更多
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ...<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>展开更多
Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optim...Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.展开更多
As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study ai...As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.展开更多
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported by the National Natural Science Foundation of China(Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China(Grant No.20JHQ095).
文摘The energy-saving renovation of existing residential buildings is a crucial measure to achieve the strategic goal of energy conservation and emission reduction in China and build ecologically livable cities.This article focuses on the perspective of subject behavior,starting from analyzing the current situation and difficulties of the operation of the energy-saving renovation market for existing residential buildings in China,drawing on the practical experience of the operation of the existing residential building energy-saving renovation market abroad.Based on principles such as systematicity,humanization,feasibility,and sustainability,the article constructs an operation optimization system of the existing residential building energy-saving renovation market from the perspective of subject behavior.In order to provide a reference for the healthy and orderly operation of the existing residential building energy-saving renovation market,this paper proposes implementation strategies for optimizing the operation of the existing residential building energy-saving renovation market.Suggestions are proposed from four aspects:optimizing the market environment,innovating the financing model,building the information sharing platform,and utilizing the synergies of the main subjects.
基金supported by the National Natural Science Foundation of China(62171088,U19A2052,62020106011)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(ZYGX2021YGLH215,ZYGX2022YGRH005)。
文摘Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.
基金National Natural Science Foundation of China(No.61463015)
文摘In order to acquire the most energy-saving luminairedistribution-parameters(LDPs)of highway tunnel interior zone backlighting,the parameters optimization model(POM)of backlighting for tunnel interior zone was established.Yanlieshan tunnel of Jiujing highway was taken as an example for the optimization.The optimal LDPs of the backlighting system of the tunnel interior zone were obtained by the POM,a comparison between the optimization results and those of Yanlieshan tunnel’s actual lighting system was performed,which showed that the optimized backlighting system with LED lamps installed according to the optimized LDPs could save energy remarkablely even under full capacity lighting condition.Illuminance and illuminance uniformity of the tunnel road surface still met the lighting demands even the LED lamp’s luminance decreased by 30%.A backlighting simulation experiment with the optimized backlighting LDPs for Yanlieshan tunnel was accomplished in the software Dialux.The simulation results basically agreed with the optimization calculated results from the POM which proved the correctness of the backlighting POM.
文摘There are several problems existing in the direct starting of asynchronous motor such as large starting current,reactive power absorption from network side and weak interference-resistance,etc.Aiming at this,a comprehensive energy-saving optimization model of asynchronous motor for voltage regulation based on static synchronous compensator(STATCOM)is put forward.By analyzing the working principle and operation performance of static synchronous compensator regulating voltage,a new energy-efficient optimization method for asynchronous motor is proposed based on the voltage regulator model to achieve soft start,continuous dynamic reactive power compensation and the terminal voltage stability control.The multi-objective optimal operation of asynchronous motor is realized by controlling the inverter to adjust the reactive current dynamically.The strategy reduces the influence of starting current and grid voltage by soft starting,and realizes the function of reactive power compensation and terminal voltage stabilization.The effectiveness and superiority of the proposed model is verified by the simulation analysis and the results of comparison with the motor started directly.
基金Supported by Scientific Research Project of Hunan Province in 2020(20C1848)。
文摘Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the EducationDepartment of China (Grant No. 20JHQ095)。
文摘The core of the healthy and orderly operation of the existing residential building energy-saving renovation market lies in the exploration of the implementation mechanism of multi-subject and multi-objective integrated optimization.The multi-agent and multi-objective integrated optimization system framework is a powerful tool to guide the scientific decision-making of the market core structural entities in the future market practice. This paper analyzes the practical dilemma of energy-saving renovation of theexisting residential buildings in China, summarizes the practical experience of multi-subject and multi-objective integrated optimization of energy-saving renovation of the existing residential buildings in foreign countries, and puts forward beneficial practical enlightenment on the basis of comparison at home and abroad;The design principles of the target integrated optimization system have established a multi-subject and multi-objective integrated optimization system framework for the energy-saving renovation of the existing residential buildings, from six aspects: government guidance, trust consensus, value co-creation, risk sharing, revenue sharing, and social responsibility sharing. This paper proposes a multi-subject and multi-objective integrated practice strategy, in order to promote the efficient and orderly development of China's existing residential building energy-saving renovation market.
文摘The rapid development of China’s automobile industry has brought ever-increasing impact on resources,energy and environment,the energy-saving and new energy vehicles come into being accordingly.This article firstly systematically introduces the technical route of energy-saving and new energy vehicles of China,focusing on the key bottleneck problems arising from the construction process of current assessment system of the technical route for energy-saving and new energy vehicles,establishes the energy-saving and new energy vehicle business model assessment index system afterward based on the comparative analysis on energy-saving and new energy vehicle business assessment model and the full life cycle theory,and finally makes prospects and forecasts on vital problems of system boundary,dynamic optimization,simulation system of full life cycle assessment of energy-saving and new energy vehicle.
基金supported by the National Natural Science Foundation of China (Grant No.71872122)Late-stage Subsidy Project of Humanities and Social Sciences of the Education Department of China (Grant No. 20JHQ095)
文摘The development of the existing building energy-saving transformation market is inseparable from the internal driving force of ESCO.Giving full play to the driving role of ESCO scientifically is the internal requirement to promote the healthy and orderly operation of the existing building energy-saving transformation market.This paper summarizes the practical experience of developing ESCO driving force operation in foreign existing building energy-saving transformation market,analyzes the bottleneck of developing ESCO driving force operation in China’s existing building energy-saving transformation market,and puts forward useful practical enlightenment based on the comparison between home and abroad;According to the optimization principle of ESCO driving force operation in the development of existing building energy-saving transformation market,the optimization design framework of ESCO driving force is proposed,and the implementation strategy of ESCO driving force optimization in the development of existing building energy-saving transformation market is planned.In order to optimize and improve the effectiveness of the operation and development of the energy-saving transformation market of existing buildings with the internal driving force of ESCO.
基金Supported by The National Key Research and Development Program of China(Grant No.2020YFA0710902)The National Natural Science Foundation of China(Grant No.12172308)+1 种基金Sichuan Provincial Science and Technology Program of China(Grant No.2019YJ0227)State Key Laboratory of Traction Power of China(Grant No.2019TPL_T02).
文摘Under the influence of crosswinds,the running safety of trains will decrease sharply,so it is necessary to optimize the suspension parameters of trains.This paper studies the dynamic performance of high-speed trains under cross-wind conditions,and optimizes the running safety of train.A computational fluid dynamics simulation was used to determine the aerodynamic loads and moments experienced by a train.A series of dynamic models of a train,with different dynamic parameters were constructed,and analyzed,with safety metrics for these being determined.Finally,a surrogate model was built and an optimization algorithm was used upon this surrogate model,to find the minimum possible values for:derailment coefficient,vertical wheel-rail contact force,wheel load reduction ratio,wheel lateral force and overturning coefficient.There were 9 design variables,all associated with the dynamic parameters of the bogie.When the train was running with the speed of 350 km/h,under a crosswind speed of 15 m/s,the benchmark dynamic model performed poorly.The derailment coefficient was 1.31.The vertical wheel-rail contact force was 133.30 kN.The wheel load reduction rate was 0.643.The wheel lateral force was 85.67 kN,and the overturning coefficient was 0.425.After optimization,under the same running conditions,the metrics of the train were 0.268,100.44 kN,0.474,34.36 kN,and 0.421,respectively.This paper show that by combining train aerodynamics,vehicle system dynamics and many-objective optimization theory,a train’s stability can be more comprehensively analyzed,with more safety metrics being considered.
基金supported by National Natural Science Foundation of China(Grant No.61004077)Fundamental Research Funds for the Central Universities of China(Grant No.2860219022)Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University,China(Grant No.TPL1308)
文摘The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions--constant, linear, and quadratic--are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25,71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.
基金Project(51378050) supported by the National Natural Science Foundation of ChinaProject(B13002) supported by the “111” Project,China+2 种基金Project (8192035) supported by the Beijing Municipal Natural Science Foundation,ChinaProject(P2019G002) supported by the Science and Technology Research and Development Program of China RailwayProject(2019YJ193) supported by the State Key Laboratory for Track Technology of High-speed Railway,China。
文摘Bridges crossing active faults are more likely to suffer serious damage or even collapse due to the wreck capabilities of near-fault pulses and surface ruptures under earthquakes.Taking a high-speed railway simply-supported girder bridge with eight spans crossing an active strike-slip fault as the research object,a refined coupling dynamic model of the high-speed train-CRTS III slab ballastless track-bridge system was established based on ABAQUS.The rationality of the established model was thoroughly discussed.The horizontal ground motions in a fault rupture zone were simulated and transient dynamic analyses of the high-speed train-track-bridge coupling system under 3-dimensional seismic excitations were subsequently performed.The safe running speed limits of a high-speed train under different earthquake levels(frequent occurrence,design and rare occurrence)were assessed based on wheel-rail dynamic(lateral wheel-rail force,derailment coefficient and wheel-load reduction rate)and rail deformation(rail dislocation,parallel turning angle and turning angle)indicators.Parameter optimization was then investigated in terms of the rail fastener stiffness and isolation layer friction coefficient.Results of the wheel-rail dynamic indicators demonstrate the safe running speed limits for the high-speed train to be approximately 200 km/h and 80 km/h under frequent and design earthquakes,while the train is unable to run safely under rare earthquakes.In addition,the rail deformations under frequent,design and rare earthquakes meet the safe running requirements of the high-speed train for the speeds of 250,100 and 50 km/h,respectively.The speed limits determined for the wheel-rail dynamic indicators are lower due to the complex coupling effect of the train-track-bridge system under track irregularity.The running safety of the train was improved by increasing the fastener stiffness and isolation layer friction coefficient.At the rail fastener lateral stiffness of 60 kN/mm and isolation layer friction coefficients of 0.9 and 0.8,respectively,the safe running speed limits of the high-speed train increased to 250 km/h and 100 km/h under frequent and design earthquakes,respectively.
基金supported the National Natural Science Foundation of China (71621001, 71825004, and 72001019)the Fundamental Research Funds for Central Universities (2020JBM031 and 2021YJS203)the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety (RCS2020ZT001)
文摘Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches.
基金Supported by National Key Research and Development Program of China (Grant Nos.2022YFB4703000,2019YFB1309900)。
文摘Automation advancements prompts the extensive integration of collaborative robot(cobot)across a range of industries.Compared to the commonly used design approach of increasing the payload-to-weight ratio of cobot to enhance load capacity,equal attention should be paid to the dynamic response characteristics of cobot during the design process to make the cobot more flexible.In this paper,a new method for designing the drive train parameters of cobot is proposed.Firstly,based on the analysis of factors influencing the load capacity and dynamic response characteristics,design criteria for both aspects are established for cobot with all optimization design criteria normalized within the design domain.Secondly,with the cobot in the horizontal pose,the motor design scheme is discretized and it takes the joint motor diameter and gearbox speed ratio as optimization design variables.Finally,all the discrete values of the optimization objectives are obtained through the enumeration method and the Pareto front is used to select the optimal solution through multi-objective optimization.Base on the cobot design method proposed in this paper,a six-axis cobot is designed and compared with the commercial cobot.The result shows that the load capacity of the designed cobot in this paper reaches 8.4 kg,surpassing the 5 kg load capacity commercial cobot which is used as a benchmark.The minimum resonance frequency of the joints is 42.70 Hz.
文摘Compared with a delta wing aircraft, the double delta wing configuration has better aerodynamic performance at high angles of attack. An operational analysis was introduced as a method for evaluating training effectiveness of trainer aircraft. Approaches to the engineering estimation of aerodynamic characteristics for aircraft with a double delta wing configuration were studied, and the procedures for determining aircraft performance indices formulated. Taking training effectiveness as the objective function and geometric parameters of the wing platform as design variables, through a numerical multivariate optimization arithmetic, the conceptual design optimization for a certain fighter trainer aircraft with double delta wing configuration was carried out under the constraints of tactical and technical requirements and interrelated geometry. Agreement of a calculation example with engineering practice indicates that the optimal design has higher training effectiveness than the baseline design, and in addition, improves the structural force bearing conditions.
文摘The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly.
基金supported by the Sichuan Science and Technology Program(2023JDRC0062)National Natural Science Foundation of China(12172308)Project of State Key Laboratory of Traction Power(2023TPL-T05).
文摘The aerodynamic optimization design of high-speed trains(HSTs)is crucial for energy conservation,environmental preservation,operational safety,and speeding up.This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs.First,the study explores the impact of train nose shape parameters on aerodynamic performance.The parameterization methods involved in the aerodynamic multiobjective optimization ofHSTs are summarized and classified as shape-based and disturbance-based parameterizationmethods.Meanwhile,the advantages and limitations of each parameterizationmethod,aswell as the applicable scope,are briefly discussed.In addition,the NSGA-II algorithm,particle swarm optimization algorithm,standard genetic algorithm,and other commonly used multi-objective optimization algorithms and the improvements in the field of aerodynamic optimization for HSTs are summarized.Second,this study investigates the aerodynamic multi-objective optimization technology for HSTs using the surrogate model,focusing on the Kriging surrogate models,neural network,and support vector regression.Moreover,the construction methods of surrogate models are summarized,and the influence of different sample infill criteria on the efficiency ofmulti-objective optimization is analyzed.Meanwhile,advanced aerodynamic optimization methods in the field of aircraft have been briefly introduced to guide research on the aerodynamic optimization of HSTs.Finally,based on the summary of the research progress of the aerodynamicmulti-objective optimization ofHSTs,future research directions are proposed,such as intelligent recognition technology of characteristic parameters,collaborative optimization of multiple operating environments,and sample infill criterion of the surrogate model.
文摘<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div>
基金supported by Talents Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021RC228)Special Funds for Basic Scientific Research Business Expenses of Central Colleges and Universities (Grant No.2021YJS103).
文摘Purpose-This study aims to improve the passenger accessibility of passenger demands in the end-ofoperation period.Design/methodology/approach-A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway,the minimum headway and the latest end-of-operation time.The objective of the model is to maximize the number of reachable passengers in the end-of-operation period.A solution method based on a preset train service is proposed,which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.Findings-The results of the case study of Wuhan Metro show that the solution method can obtain highquality solutions in a shorter time;and the shorter the time interval of passenger flow data,the more obvious the advantage of solution speed;after optimization,the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.Originality/value-Existing research results only consider the passengers who take the last train.Compared with previous research,considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination.Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network,but due to the decrease in passenger demand,postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.
文摘As energy efficiency and indoor comfort increasingly become key standards in modern residential and office environments,research on intelligent fan speed control systems has become particularly important.This study aims to develop a temperature-feedback-based fan speed optimization strategy to achieve higher energy efficiency and user comfort.Firstly,by analyzing existing fan speed control technologies,their main limitations are identified,such as the inability to achieve smooth speed transitions.To address this issue,a BP-PID speed control algorithm is designed,which dynamically adjusts fan speed based on indoor temperature changes.Experimental validation demonstrates that the designed system can achieve smooth speed transitions compared to traditional fan systems while maintaining stable indoor temperatures.Furthermore,the real-time responsiveness of the system is crucial for enhancing user comfort.Our research not only demonstrates the feasibility of temperature-based fan speed optimization strategies in both theory and practice but also provides valuable insights for energy management in future smart home environments.Ultimately,this research outcome will facilitate the development of smart home systems and have a positive impact on environmental sustainability.