Gearbox, as the crucial transmission equipment of high-speed train drive system, bears mainly the impact of wheel-rail excitation during its application, resulting in fatigue failure of the housing structure. In order...Gearbox, as the crucial transmission equipment of high-speed train drive system, bears mainly the impact of wheel-rail excitation during its application, resulting in fatigue failure of the housing structure. In order to analyze the vibration characteristics of the high-speed train gearbox housing, a test had been performed under operating condition on Wuhan-Guangzhou High-Speed Railway, where a host of vibration characteristics of different parts of housing had been obtained, and vibration signals had also been comparatively analyzed using acceleration amplitude spectrum and equivalent acceleration amplitude method. The result showed that the vibration level of the measuring point A on the joint part of the gearbox housing and axle bearing block was higher than that of the measuring point B on the upper part of the gearbox housing, both horizontally and vertically. And there existed attenuation during the transmission process of vibration from point A to Point B. Further, when a train was moving at a high speed, the gearbox vibration at the head carriage was better than that at the tail carriage. In addition, when a train slowed down from 300 km/h to 200 km/h, the horizontal equivalent acceleration amplitude dropped by 58% while the vertical one declined by 62%. Equivalent acceleration amplitude method was used to identify the vibration relations among different parts of housing, and the validity and applicability of this method were verified by data analysis. The study provided reference to ensure the operating safety of high-speed train drive system and design of new housing structure.展开更多
For the fatigue failure and tribological property of a rolling element bearing,the contact load variation plays a significant role while the most loaded position of the bearing outer raceway takes the greatest risk of...For the fatigue failure and tribological property of a rolling element bearing,the contact load variation plays a significant role while the most loaded position of the bearing outer raceway takes the greatest risk of failure.This paper focuses on the variation in contact load on the most loaded position of the outer raceway of a gearbox bearing in high-speed train.Under operation conditions of different input speeds and torques,the dynamic contact load distribution in a gearbox bearing of high-speed train was measured by instrumenting the bearing with strain gauges.The most loaded position was identified accordingly and the features and reasons of the variation in contact load on this position were suggested.Three factors were found to have varying degrees of impact on the contact load variation under different gear meshing conditions:modal vibration of the cage or shaft,radial geometrical differences among the rollers and vibration of the gearbox housing.展开更多
文摘Gearbox, as the crucial transmission equipment of high-speed train drive system, bears mainly the impact of wheel-rail excitation during its application, resulting in fatigue failure of the housing structure. In order to analyze the vibration characteristics of the high-speed train gearbox housing, a test had been performed under operating condition on Wuhan-Guangzhou High-Speed Railway, where a host of vibration characteristics of different parts of housing had been obtained, and vibration signals had also been comparatively analyzed using acceleration amplitude spectrum and equivalent acceleration amplitude method. The result showed that the vibration level of the measuring point A on the joint part of the gearbox housing and axle bearing block was higher than that of the measuring point B on the upper part of the gearbox housing, both horizontally and vertically. And there existed attenuation during the transmission process of vibration from point A to Point B. Further, when a train was moving at a high speed, the gearbox vibration at the head carriage was better than that at the tail carriage. In addition, when a train slowed down from 300 km/h to 200 km/h, the horizontal equivalent acceleration amplitude dropped by 58% while the vertical one declined by 62%. Equivalent acceleration amplitude method was used to identify the vibration relations among different parts of housing, and the validity and applicability of this method were verified by data analysis. The study provided reference to ensure the operating safety of high-speed train drive system and design of new housing structure.
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(Grant U1834202).
文摘For the fatigue failure and tribological property of a rolling element bearing,the contact load variation plays a significant role while the most loaded position of the bearing outer raceway takes the greatest risk of failure.This paper focuses on the variation in contact load on the most loaded position of the outer raceway of a gearbox bearing in high-speed train.Under operation conditions of different input speeds and torques,the dynamic contact load distribution in a gearbox bearing of high-speed train was measured by instrumenting the bearing with strain gauges.The most loaded position was identified accordingly and the features and reasons of the variation in contact load on this position were suggested.Three factors were found to have varying degrees of impact on the contact load variation under different gear meshing conditions:modal vibration of the cage or shaft,radial geometrical differences among the rollers and vibration of the gearbox housing.
基金Supported by the national nature science foundation of China(51137001 and 50977011)the specialized research fund for thedoctoral program of higher education of China(20090092120042)