期刊文献+
共找到305篇文章
< 1 2 16 >
每页显示 20 50 100
The Optimizing Model and Its Solution for Making Train Working Graph with Computer on Separative Division of Double-Track Lines
1
作者 Peng Qiyuan Ju Tingying(Department of Transportation Engineering),Soulhudest Jiaolong Universily,Chengdu 610031,China 《Journal of Modern Transportation》 1994年第2期181-188,共8页
The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, t... The authoros specialize in the field of optunization and automatic programme oftrain working graph. In this peper, at frist, a mixed 0-1 integer progranimingmodel about this problem for duuble-track lines is set up, then the principle andProcess of selution are stated, with an application exaiiiple put forward. 展开更多
关键词 train workins graph double-tracK line division mixed 0-1 mtegerprosrammins COMPUTER
下载PDF
基于知识图谱的高速列车知识融合方法
2
作者 王淑营 李雪 +1 位作者 黎荣 张海柱 《西南交通大学学报》 EI CSCD 北大核心 2024年第5期1194-1203,共10页
为解决高速列车各领域知识之间关联不明、难以检索和应用等问题,首先分析高速列车多源异构知识的组织形式,并结合高速列车产品结构树和阶段领域,构建高速列车领域知识图谱模式层和知识图谱;其次,通过双向编码变换器-双向长短期记忆网络... 为解决高速列车各领域知识之间关联不明、难以检索和应用等问题,首先分析高速列车多源异构知识的组织形式,并结合高速列车产品结构树和阶段领域,构建高速列车领域知识图谱模式层和知识图谱;其次,通过双向编码变换器-双向长短期记忆网络-条件随机场(BERT-BILSTM-CRF)模型进行实体识别,得到阶段领域本体的映射;然后,将高速列车实体属性分为结构化和非结构化2类,并分别使用Levenshtein距离和连续词袋模型-双向长短期记忆网络(CBOW-BILSTM)模型计算相应属性的相似度,得到对齐实体对;最后,结合高速列车产品编码结构树进行映射融合,构建高速列车领域融合知识图谱.应用本文方法对高速列车转向架进行实例验证的结果表明:在命名实体识别方面,基于BERT-BILSTM-CRF模型得到的实体识别准确率为91%;在实体对齐方面,采用Levenshtein距离、CBOW-BILSTM模型计算实体相似度的准确率和召回率的调和平均数(F1值)分别为82%、83%. 展开更多
关键词 高速列车 知识图谱 知识融合 本体映射 实体对齐
下载PDF
自适应特征融合的多模态实体对齐研究 被引量:1
3
作者 郭浩 李欣奕 +2 位作者 唐九阳 郭延明 赵翔 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期758-770,共13页
多模态数据间交互式任务的兴起对于综合利用不同模态的知识提出了更高的要求,因此融合不同模态知识的多模态知识图谱应运而生.然而,现有多模态知识图谱存在图谱知识不完整的问题,严重阻碍对信息的有效利用.缓解此问题的有效方法是通过... 多模态数据间交互式任务的兴起对于综合利用不同模态的知识提出了更高的要求,因此融合不同模态知识的多模态知识图谱应运而生.然而,现有多模态知识图谱存在图谱知识不完整的问题,严重阻碍对信息的有效利用.缓解此问题的有效方法是通过实体对齐进行知识图谱补全.当前多模态实体对齐方法以固定权重融合多种模态信息,在融合过程中忽略不同模态信息贡献的差异性.为解决上述问题,设计一套自适应特征融合机制,根据不同模态数据质量动态融合实体结构信息和视觉信息.此外,考虑到视觉信息质量不高、知识图谱之间的结构差异也影响实体对齐的效果,本文分别设计提升视觉信息有效利用率的视觉特征处理模块以及缓和结构差异性的三元组筛选模块.在多模态实体对齐任务上的实验结果表明,提出的多模态实体对齐方法的性能优于当前最好的方法. 展开更多
关键词 多模态知识图谱 实体对齐 预训练模型 特征融合
下载PDF
基于改进的提示学习方法的双通道情感分析模型
4
作者 沈君凤 周星辰 汤灿 《计算机应用》 CSCD 北大核心 2024年第6期1796-1806,共11页
针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同... 针对先前提示学习方法中存在的模板迭代更新周期长、泛化能力差等问题,基于改进的提示学习方法提出一种双通道的情感分析模型。首先,将序列化后的提示模板与输入词向量一起引入注意力机制结构,在输入词向量在多层注意力机制中更新的同时迭代更新提示模板;其次,在另一通道采用ALBERT(A Lite BERT(Bidirectional Encoder Representations from Transformers))模型提取语义信息;最后,输出用集成方式提取的语义特征,提升整体模型的泛化能力。所提模型在SemEval2014的Laptop和Restaurants数据集、ACL(Association for Computational Linguistics)的Twitter数据集和斯坦福大学创建的SST-2数据集上进行实验,分类准确率达到80.88%、91.78%、76.78%和95.53%,与基线模型BERT_Large相比,分别提升0.99%、1.13%、3.39%和2.84%;与P-tuning v2相比,所提模型的分类准确率在Restaurants数据集、Twitter数据集以及SST-2数据集上分别有2.88%、3.60%和2.06%的提升,且比原方法更早达到收敛状态。 展开更多
关键词 提示学习 BERT ALBERT 对抗训练 图卷积神经网络
下载PDF
融合GPT和知识图谱的洪涝应急决策智能问答系统研究
5
作者 王喆 陆俊燃 +1 位作者 杨栋梁 李墨潇 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第4期5-11,共7页
为提高生成式预训练语言大模型(generative pre-trained transformer, GPT)的应急管理信息分析能力,以实现洪涝灾害应急处置过程中的在线辅助决策,提出融合GPT和知识图谱的应急决策智能问答系统(KG-GPT)。改进GPT架构以识别问题中的关... 为提高生成式预训练语言大模型(generative pre-trained transformer, GPT)的应急管理信息分析能力,以实现洪涝灾害应急处置过程中的在线辅助决策,提出融合GPT和知识图谱的应急决策智能问答系统(KG-GPT)。改进GPT架构以识别问题中的关键信息,利用知识图谱推理应急领域知识并生成具有逻辑性的回答;结合洪涝灾害的实际应急决策问答数据集并编制演练脚本,使用自动评估和专家评估方法将本系统与GPT进行对比实验。研究结果表明:该系统成功融合应急领域知识图谱和GPT模型,能够深刻理解问题的背景信息并生成流畅回答;与GPT相比,该系统可为决策者提供更快速准确的在线辅助决策工具。研究结果可提升洪涝灾害应急信息分析和决策效率。 展开更多
关键词 洪涝灾害 知识图谱 预训练模型 自动问答系统 在线辅助决策
下载PDF
引入知识增强和对比学习的知识图谱补全
6
作者 刘娟 段友祥 +1 位作者 陆誉翕 张鲁 《计算机工程》 CAS CSCD 北大核心 2024年第7期112-122,共11页
知识图谱补全是提高知识图谱质量的重要手段,主要分为基于结构和基于描述的方法。基于结构的补全方法对图谱中常见的长尾实体推理性能表现不佳,基于描述的补全方法在描述信息利用和负样本信息学习方面存在不足。针对上述问题,提出基于... 知识图谱补全是提高知识图谱质量的重要手段,主要分为基于结构和基于描述的方法。基于结构的补全方法对图谱中常见的长尾实体推理性能表现不佳,基于描述的补全方法在描述信息利用和负样本信息学习方面存在不足。针对上述问题,提出基于知识增强的知识图谱补全方法KEKGC。设计一种特定模板,将三元组及其描述信息通过人工定义的模板转换为连贯的自然语言描述语句输入预训练语言模型,增强语言模型对三元组结构知识与描述知识的理解能力。在此基础上,提出一种对比学习框架来提高链接预测任务的效率与准确率,通过建立记忆库存储实体嵌入向量,从中选择正负样本并结合Info NCE损失进行训练。实验结果显示,相较于MEM-KGC,KEKGC在WN18RR数据集上链接预测任务的平均倒数秩(MRR)提升了5.5,Hits@1、Hits@3、Hits@10指标分别提升了2.8、0.7、4.2个百分点,三元组分类任务准确率达到94.1%,表明所提方法具有更高的预测准确率与更好的泛化能力,尤其对于长尾实体,能够有效提升图谱补全的效果与效率。 展开更多
关键词 知识图谱 预训练语言模型 链接预测 对比学习 实体描述
下载PDF
汽车故障知识图谱构建及应用研究 被引量:1
7
作者 李先旺 黄忠祥 +2 位作者 贺德强 刘赛虎 秦学敬 《科学技术与工程》 北大核心 2024年第4期1578-1587,共10页
知识图谱技术对汽车高效的故障诊断具有重要的意义,现有汽车故障知识图谱构建存在着实体识别模型效果不佳、无法解决嵌套实体等问题。针对上述问题,通过采用全词掩码的预训练语义模型、加入对抗训练和改进嵌套实体识别模型的方式提高实... 知识图谱技术对汽车高效的故障诊断具有重要的意义,现有汽车故障知识图谱构建存在着实体识别模型效果不佳、无法解决嵌套实体等问题。针对上述问题,通过采用全词掩码的预训练语义模型、加入对抗训练和改进嵌套实体识别模型的方式提高实体识别模型效果,提出了一种改进的嵌套实体识别模型。实验结果表明,所提模型F1值(F_(1))、精确率(P)和召回率(R)相比基线模型分别提高了3.56%、4.08%、3.05%,相比其他模型也有不同程度的提高,验证了所提模型对汽车维修领域实体识别具有显著效果。同时,基于构建的汽车故障知识图谱,实现了汽车故障知识智能问答原型系统,展示了知识图谱技术在汽车故障诊断与维护领域的应用前景。 展开更多
关键词 汽车维修 知识图谱 嵌套命名实体识别 预训练模型 对抗训练
下载PDF
自监督对比的属性图联合表示聚类
8
作者 王静红 王慧 《计算机工程与应用》 CSCD 北大核心 2024年第16期133-142,共10页
现实世界中越来越多的复杂数据被表示为具有属性节点的图,因此属性图聚类是图挖掘中的一个重要问题。图神经网络在图结构数据的编码表示方面取得较好性能,但基于卷积操作或者注意力机制的图神经网络方法存在节点噪声、特征过度平滑、网... 现实世界中越来越多的复杂数据被表示为具有属性节点的图,因此属性图聚类是图挖掘中的一个重要问题。图神经网络在图结构数据的编码表示方面取得较好性能,但基于卷积操作或者注意力机制的图神经网络方法存在节点噪声、特征过度平滑、网络异质性、计算代价高昂等问题。基于深度学习方法如自编码器能够有效地提取节点属性表示,但不能包含丰富结构信息。因此提出了一种基于自监督训练和对比学习的图联合表示聚类方法(self-supervised contrastive graph joint representation clustering,SCRC)。使用自编码器预训练学习节点的属性表示,通过在图结构信息上增加对比损失信息,使用影响对比损失融合更加丰富的结构信息,联合图结构信息和属性表示,基于神经网络自监督训练机制迭代优化完成聚类任务。通过设计简单的线性模型,避免使用卷积和注意力机制,有效整合结构信息,使得运行速度更快。在广泛使用的引文网络数据上进行实验,对参数敏感性进行分析,验证了影响对比损失和自监督联合聚类的有效性。实验结果表明,所提出的方法取得了显著的性能提升,并且对节点噪声、特征过度平滑和网络异质性更具有鲁棒性。 展开更多
关键词 属性图聚类 自监督训练 对比学习 自编码器 联合表示学习
下载PDF
基于CiteSpace知识图谱的新财经人才培养模式研究
9
作者 李雪敏 祝宏涛 王菲菲 《对外经贸》 2024年第3期107-110,共4页
为了促进新财经人才培养模式创新发展,基于宏观视角,借助CiteSpace软件分析近10年新财经人才培养领域的发文特点,梳理出新财经人才培养模式研究的现状、热点与演化脉络,在此基础上提出我国新财经人才培养的具体路径:加强校企合作、校校... 为了促进新财经人才培养模式创新发展,基于宏观视角,借助CiteSpace软件分析近10年新财经人才培养领域的发文特点,梳理出新财经人才培养模式研究的现状、热点与演化脉络,在此基础上提出我国新财经人才培养的具体路径:加强校企合作、校校合作,重点发挥核心机构辐射带动作用;开展“新财经+地方特色”教学培养模式;全方位立体化建立纵深式产教融合培养模式;深化学科融合力度,推动新财经人才综合素质培养。 展开更多
关键词 新财经 人才培养模式 教育改革 知识图谱
下载PDF
融合标签语义嵌入和图卷积的短文本特征扩展及分类方法
10
作者 张灵 李荣臻 郑苏 《广东工业大学学报》 CAS 2024年第1期69-78,共10页
针对短文本长度过短、关键词偏少和标签信息利用不足造成的分类过程中面临特征稀疏和语义不明确的问题,提出了融合标签语义嵌入的图卷积网络模型。首先,在传统的术语频率和逆文档频率算法基础上,提出了融合单词所属文本的类间、类内分... 针对短文本长度过短、关键词偏少和标签信息利用不足造成的分类过程中面临特征稀疏和语义不明确的问题,提出了融合标签语义嵌入的图卷积网络模型。首先,在传统的术语频率和逆文档频率算法基础上,提出了融合单词所属文本的类间、类内分布关系的全局词频提取算法。其次,利用融合标签嵌入的方法,将每条训练文本与相对应的标签引入到同一个特征空间内,通过筛选聚合提取更能突显文本类别的近义词嵌入,作为文本图的文档节点的嵌入表示。最后,将文本图输入到图卷积神经网络学习后,获得的特征与预训练模型提取文本上下文的特征相融合,提升短文本的分类质量以及整个模型的泛化能力,在4个短文本数据集MR、web_snippets、R8和R52上对本文模型和14个基线算法进行了对比实验,结果表明本文提出的模型相比于对比模型具有更优的结果,在识别精度、召回率以及F_1值上有着更好的表现。 展开更多
关键词 短文本 标签语义 特征空间 图卷积网络 预训练模型
下载PDF
基于并行异构图和序列注意力机制的中文实体关系抽取模型
11
作者 毛典辉 李学博 +2 位作者 刘峻岭 张登辉 颜文婧 《计算机应用》 CSCD 北大核心 2024年第7期2018-2025,共8页
近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之... 近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之一。针对中文文本中的重叠三元组问题,提出了一种混合神经网络实体关系联合抽取(HNNERJE)模型。HNNERJE模型以并行方式融合序列注意力机制和异构图注意力机制,并结合门控融合策略构建了深度集成框架。该模型不仅可以同时捕获中文文本的语序信息和实体关联信息,还能够自适应地调整主客体标记器的输出,从而有效解决重叠三元组问题。另外,通过引入对抗训练算法提高模型对未见样本和噪声的适应能力。运用SHAP(SHapley Additive exPlanations)方法对HNNERJE模型进行解释分析,基于模型的识别结果解析它在抽取实体和关系时所依据的关键特征。HNNERJE模型在NYT、WebNLG、CMeIE和DuIE数据集上的F1值分别达到了92.17%、93.42%、47.40%和67.98%。实验结果表明:HNNERJE模型可以将非结构化的文本数据转化为结构化的知识表示,有效提取其中蕴含的有价值信息。 展开更多
关键词 实体关系抽取 异构图 注意力机制 对抗训练 SHAP方法
下载PDF
构建预训练动态图神经网络预测学术合作行为消失
12
作者 杜郁 朱焱 《计算机应用》 CSCD 北大核心 2024年第9期2726-2731,共6页
现有链接消失问题研究工作一部分只停留在发现和分析链接消失的原因上,一部分仅使用静态网络表示进行预测,很少从网络动态演化的角度分析链接消失预测问题。针对以上研究现状,提出一种预训练动态图神经网络学术合作行为消失预测模型PreD... 现有链接消失问题研究工作一部分只停留在发现和分析链接消失的原因上,一部分仅使用静态网络表示进行预测,很少从网络动态演化的角度分析链接消失预测问题。针对以上研究现状,提出一种预训练动态图神经网络学术合作行为消失预测模型PreDGN(Pre-trained Dynamic Graph neural Network)。PreDGN首先通过动态图生成预训练任务捕捉动态网络的时间信息,同时利用时序模体构造的边特征补充网络的拓扑信息;其次,结合基于时间编码的注意力节点嵌入,能够更精准地学习节点的表征。经过预训练的模型学习了动态图的历史信息,而且可以在特定的学术合作行为消失预测任务中进行微调。使用公开学术合作数据集HepTh中不同时间跨度、不同数据规模数据进行实验的结果表明,在1996、1997、94—96和97—99子数据集上,相较于次优的动态图神经网络方法(DyRep),所提模型的曲线下面积(AUC)指标分别提高了10.47、8.16、13.41和3.27个百分点,平均精度(AP)指标分别提高了5.87、2.15、8.26和3.01个百分点。 展开更多
关键词 动态图 预训练 图表示学习 图神经网络 网络模体
下载PDF
长江流域取水许可知识图谱问答系统 被引量:1
13
作者 曾德晶 张军 +3 位作者 曹卫华 管党根 许婧 黎育朋 《人民长江》 北大核心 2024年第6期234-239,共6页
随着水资源取水许可领域管理要求的不断提高,传统水资源取水许可信息管理系统难以满足复杂的信息检索需求,制约了水资源精细化管理水平的提升。为了打破系统间信息孤岛,提升取水许可信息检索效率,建立了长江流域取水许可知识图谱,基于... 随着水资源取水许可领域管理要求的不断提高,传统水资源取水许可信息管理系统难以满足复杂的信息检索需求,制约了水资源精细化管理水平的提升。为了打破系统间信息孤岛,提升取水许可信息检索效率,建立了长江流域取水许可知识图谱,基于大规模预训练语言模型提出了包含实体提及识别、实体链接、关系匹配等功能的知识图谱问答流水线方法,结合取水许可领域数据特点采用BM25算法进行候选实体排序,构建了长江流域取水许可知识图谱问答系统,并基于BS架构开发了Web客户端。实验表明:该系统在测试集上达到了90.37%的准确率,可支撑长江流域取水许可领域检索需求。 展开更多
关键词 取水许可 知识图谱 预训练语言模型 问答系统 水资源 长江流域
下载PDF
融合知识图谱的预训练模型研究综述
14
作者 杨杰 刘纳 +3 位作者 徐贞顺 郑国风 李晨 道路 《太原理工大学学报》 北大核心 2024年第1期142-154,共13页
【目的】针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方... 【目的】针对预训练模型仍面临处理复杂任务所需的知识信息质量不高和数量庞杂的挑战,而融合知识图谱的预训练模型可增强其性能。进一步研究并深入探讨如何有效地融合知识图谱到预训练模型中,以丰富目前综述所包含的知识增强类型。【方法】分析并总结了近年来融合知识图谱的预训练模型的相关文献,首先简要介绍了预训练模型引入知识图谱的原因、优势以及难点;其次详细讨论了隐性结合、显性结合两类方法,并对代表模型的特点与优缺点进行了对比总结;最后对融合知识图谱的预训练模型将面临的挑战以及未来研究发展趋势进行了讨论。【结论】融合知识图谱的预训练模型核心问题是解决如何将知识库中的信息有效地融合到预训练模型中,未来可以探索更加有效和高效的知识融合方法,以提高模型的性能和泛化能力。 展开更多
关键词 深度学习 预训练模型 知识图谱 增强
下载PDF
基于态靶辨治代谢疾病智能辅助诊疗系统的研究与设计
15
作者 张红 倪皖东 +2 位作者 姜又琳 李享 刘堃靖 《中国数字医学》 2024年第5期8-13,27,共7页
目的:基于“态靶辨证”中医诊疗思维,利用人工智能技术为代谢病中医辅助诊疗提供智能化支持。方法:通过自然语言处理技术,对医学文献和专家经验进行信息抽取和实体识别,构建包含疾病状态、治疗靶点及相关辨证规则的术语知识库。在此基础... 目的:基于“态靶辨证”中医诊疗思维,利用人工智能技术为代谢病中医辅助诊疗提供智能化支持。方法:通过自然语言处理技术,对医学文献和专家经验进行信息抽取和实体识别,构建包含疾病状态、治疗靶点及相关辨证规则的术语知识库。在此基础上,利用图数据库和深度学习算法,构建态靶辨证知识图谱,表达不同疾病状态与治疗靶点之间的复杂关系。结果:通过模型训练和知识推理,结合病例的具体症状和体质,推荐相应的中医治疗方案,提高了代谢病辅助诊疗的准确性和效率。结论:本研究为中医辨证施治提供了新的方法和思路,不断迭代优化算法,拓展临床应用,推动中医药辅助诊疗的发展和完善,为中医药传承创新奠定良好的技术基础。 展开更多
关键词 人工智能 代谢性疾病 辅助诊疗 知识图谱 态靶辨治 模型训练
下载PDF
知识图谱赋能教学的逻辑框架及其在医学教育中的实践探索
16
作者 王莉 奚丽君 《医学信息学杂志》 CAS 2024年第9期96-101,共6页
目的/意义构建知识图谱型智能教学应用系统,为医学院校持续优化专业建设、提高医学及相关专业人才培养质量提供数据支撑。方法/过程采用文献归纳法,系统梳理当前知识图谱应用于教学的进展,基于布鲁姆教学认知模型,结合学生学习情况及底... 目的/意义构建知识图谱型智能教学应用系统,为医学院校持续优化专业建设、提高医学及相关专业人才培养质量提供数据支撑。方法/过程采用文献归纳法,系统梳理当前知识图谱应用于教学的进展,基于布鲁姆教学认知模型,结合学生学习情况及底层算法,构建知识图谱型智能教学应用系统。结果/结论系统通过精准检测、内容推送及路径规划,形成动态闭环的教学反馈机制,有助于提升临床教师的精准教学能力,促进医学生个性化学习。 展开更多
关键词 知识图谱 医学教育 精准教学 个性化学习 教学能力培训
下载PDF
基于预训练与新型时序图神经网络的智能合约漏洞检测方法
17
作者 庄园 樊泽楷 +2 位作者 王诚 孙建国 李耀麟 《通信学报》 EI CSCD 北大核心 2024年第9期101-114,共14页
针对现有深度学习漏洞检测方法对合约字节码特征挖掘不足、漏洞语义表征不精准,且传统图神经网络模型对合约语句的时序信息学习能力不足,提出一种基于预训练与时序图神经网络的智能合约漏洞检测方法。首先,通过预训练模型将智能合约字... 针对现有深度学习漏洞检测方法对合约字节码特征挖掘不足、漏洞语义表征不精准,且传统图神经网络模型对合约语句的时序信息学习能力不足,提出一种基于预训练与时序图神经网络的智能合约漏洞检测方法。首先,通过预训练模型将智能合约字节码建模为漏洞语义感知的合约图结构。其次,结合自注意力机制,设计了一种新颖的基于事件驱动的时序图神经网络模型,实现对合约执行中时序信息的有效抽取。最后,聚焦于可重入漏洞、时间戳依赖漏洞以及Tx.origin身份认证漏洞,通过120932份真实合约数据集进行大量的评估实验,结果表明所提方法的检测效果显著优于现有方法。 展开更多
关键词 区块链 智能合约 漏洞检测 预训练模型 图神经网络
下载PDF
基于领域概念图的航天新闻自动摘要模型
18
作者 黄浩宁 陈志敏 +1 位作者 徐聪 张晓燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第1期317-327,共11页
互联网海量的航天新闻中隐含着大量航天情报信息,对其进行理解与压缩是提高后续情报分析效率的基础。然而通用的自动摘要算法往往会忽略很多航天领域关键信息,且有监督自动摘要算法需要对领域文本进行大量的数据标注,费时费力。因此,提... 互联网海量的航天新闻中隐含着大量航天情报信息,对其进行理解与压缩是提高后续情报分析效率的基础。然而通用的自动摘要算法往往会忽略很多航天领域关键信息,且有监督自动摘要算法需要对领域文本进行大量的数据标注,费时费力。因此,提出一种基于领域概念图的无监督自动摘要(DCG-TextRank)模型,利用领域术语辅助引导图排序,提高模型对领域文本的理解力。该模型分3个模块:领域概念图生成、图权重初始化、图排序及语义筛选。根据句向量相似度和领域术语库,将文本转换为包含句子节点和领域术语节点的领域概念图;根据航天新闻文本特征初始化领域概念图权值;采用TextRank模型对句子进行排序,并在语义筛选模块通过图节点聚类及设置摘要语义保留度的方法改进TextRank的输出,充分保留文本的多语义信息并降低冗余。所提模型具有领域可移植性,且实验结果表明:在航天新闻数据集中,所提模型相比传统TextRank模型性能提升了14.97%,相比有监督抽取式文本摘要模型BertSum和MatchSum性能提升了4.37%~12.97%。 展开更多
关键词 自动文本摘要 领域概念图 预训练语言模型 图排序算法 图节点聚类
下载PDF
基于知识图谱和预训练语言模型深度融合的可解释生物医学推理
19
作者 徐寅鑫 杨宗保 +2 位作者 林宇晨 胡金龙 董守斌 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第1期62-70,共9页
基于预训练语言模型(LM)和知识图谱(KG)的联合推理在应用于生物医学领域时,因其专业术语表示方式多样、语义歧义以及知识图谱存在大量噪声等问题,联合推理模型并未取得较好的效果。基于此,提出一种面向生物医学领域的可解释推理方法DF-... 基于预训练语言模型(LM)和知识图谱(KG)的联合推理在应用于生物医学领域时,因其专业术语表示方式多样、语义歧义以及知识图谱存在大量噪声等问题,联合推理模型并未取得较好的效果。基于此,提出一种面向生物医学领域的可解释推理方法DF-GNN。该方法统一了文本和知识图谱的实体表示方式,利用大型生物医学知识库构造子图并进行去噪,改进文本和子图实体的信息交互方式,增加对应文本和子图节点的直接交互,使得两个模态的信息能够深度融合。同时,利用知识图谱的路径信息对模型推理过程提供了可解释性。在公开数据集MedQA-USMLE和MedMCQA上的测试结果表明,与现有的生物医学领域联合推理模型相比,DF-GNN可以更可靠地利用结构化知识进行推理并提供解释性。 展开更多
关键词 生物医学 预训练语言模型 知识图谱 联合推理
下载PDF
文本特征和图结点混合增强的图卷积网络文本分类 被引量:1
20
作者 杨晓奇 刘伍颖 《新疆大学学报(自然科学版)(中英文)》 CAS 2024年第1期69-77,109,共10页
在BertGCN模型的基础上改进其结构,同时结合文本特征和图结点混合增强的方法,使用新的边权重计算算法BM25+构造图的边.使用R8、R52、Ohsumed和MR这4个常用的公开数据集来验证所提方法的有效性.结果表明:与BertGCN模型及其它基线模型相比... 在BertGCN模型的基础上改进其结构,同时结合文本特征和图结点混合增强的方法,使用新的边权重计算算法BM25+构造图的边.使用R8、R52、Ohsumed和MR这4个常用的公开数据集来验证所提方法的有效性.结果表明:与BertGCN模型及其它基线模型相比,该方法在4个文本分类数据集上的准确率评价指标均有不同程度的提升. 展开更多
关键词 BM25+ 文本特征增强 图结点增强 预训练模型 图卷积网络 文本分类
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部