Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the runn...The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.展开更多
The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the beh...The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the behaviour of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis regarding the dynamic behaviour of these bodies. From these hypotheses and following the observation of the behaviour of free bodies in space, we have developed axioms and a mathematical-physical model. Consequently, we have deduced a movement equation, coherent with the hypotheses and the observed behaviour. This dynamic model, in the case of rigid solid bodies or systems, allows putting forward a series of laws and corollaries in relation to its dynamic performance. These laws have subsequently been confirmed by experimental tests. The whole of this research constitutes a rational and conceptual structure which we have named Theory of Dynamic Interactions (TID). This logical deductive system allows predicting the behaviour of solid bodies subject to multiple accelerations by rotation. In the conclusions, we underline that coherence has been obtained between the principles and axioms, the developed physical-mathematical model, the obtained movement equation, the deduced laws and the realised experimental tests.展开更多
Considering dynamical disease spreading network consisting of moving individuals,a new double-layer network is constructed,one where the information dissemination process takes place and the other where the dynamics o...Considering dynamical disease spreading network consisting of moving individuals,a new double-layer network is constructed,one where the information dissemination process takes place and the other where the dynamics of disease spreading evolves.On the basis of Markov chains theory,a new model characterizing the coupled dynamics between information dissemination and disease spreading in populations of moving agents is established and corresponding state probability equations are formulated to describe the probability in each state of every node at each moment.Monte Carlo simulations are performed to characterize the interaction process between information and disease spreading and investigate factors that influence spreading dynamics.Simulation results show that the increasing of information transmission rate can reduce the scale of disease spreading in some degree.Shortening infection period and strengthening consciousness for self-protection by decreasing individual’s scope of activity both can effectively reduce the final refractory density for the disease but have less effect on the information dissemination.In addition,the increasing of vaccination rate or decreasing of long-range travel can also reduce the scale of disease spreading.展开更多
An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential o...An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.展开更多
In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation i...In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation in our universe, our research group proposes new dynamic hypotheses that explain the behaviour observed when these bodies are subject to new simultaneous non-coaxial rotations. A new gyroscopic conical pendulum was designed for this purpose. Experimental tests initially conducted with this new gyroscopic conical pendulum were repeated for their recording on video, which accompanied this paper for better understanding thereof. These experimental tests positively confirm the new Theory of Dynamic Interactions, and its dynamic laws, which help us to understand the behaviour of this pendulum and, in general, that of the baryonic mass when it is subject to non-coaxial simultaneous rotations. It thus provides a better understanding of the nature and the dynamic behaviour of our universe.展开更多
Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims...Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims to propose new hypotheses in the field of dynamics to enhance our understanding of the behaviour of atmospheric disturbances caused by rotating winds. I believe that the criteria of classical dynamics that are applied to vortex systems in the atmosphere should be rigorously reviewed. I propose to establish new hypotheses in the field of dynamics, in order to better interpret rotation in nature. These hypotheses have been structured into a new theory that has been tested experimentally by both ourselves and third parties, with positive results. I propose to use the Theory of Dynamic Interactions (TDI) to interpret the behaviour of systems undergoing successive rotations around different axes—which we will refer to as non-coaxial rotations. I hold that this theory applies to air masses and groups of particles in suspension that are accelerated by rotations. Accordingly, it should be used to interpret the behaviour of tornadoes, cyclones and hurricanes. I believe that this proposal could enhance our understanding of these atmospheric phenomena and improve predictions about them.展开更多
This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-...This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.展开更多
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna...Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金Acknowledgements This research is sponsored by the Major State Basic Research Development Program of China ("973" Program) (2013CB036203), the 111 Project (B13002), and the National Natural Science Foundation of China (U1434205, U1434210, 51338001 ).
文摘The train-bridge dynamic interaction problem began with the development of railway technology, and requires an evaluation method for bridge design in order to ensure the safety and stability of the bridge and the running train. This problem is studied using theoretical analysis, numerical simulation, and experimental study. In the train-bridge dynamic interaction system proposed in this paper, the train vehicle model is established by the rigid-body dynamics method, the bridge model is established by the finite element method, and the wheel/rail vertical and lateral interaction are simulated by the corresponding assumption and the Kalker linear creep theory, respectively. Track irregularity, structure deformation, wind load, collision load, structural damage, foundation scouring, and earthquake action are regarded as the excitation for the system. The train-bridge dynamic interaction system is solved by inter-history iteration. A case study of the dynamic response of a CRH380BL high-speed train running through a standard-design bridge in China is discussed. The dynamic responses of the vehicle and of the bridge subsystems are obtained for speeds ranging from 200 km-b-1 to 400 km.h-1, and the vibration mechanism are analyzed.
文摘The aim of this paper is to present the laws of motion that can be derived from the Theory of Dynamic Interactions, and of its multiple and significant scientific applications. Based on a new interpretation on the behaviour of rigid bodies exposed to simultaneous non-coaxial rotations, we have developed a hypothesis regarding the dynamic behaviour of these bodies. From these hypotheses and following the observation of the behaviour of free bodies in space, we have developed axioms and a mathematical-physical model. Consequently, we have deduced a movement equation, coherent with the hypotheses and the observed behaviour. This dynamic model, in the case of rigid solid bodies or systems, allows putting forward a series of laws and corollaries in relation to its dynamic performance. These laws have subsequently been confirmed by experimental tests. The whole of this research constitutes a rational and conceptual structure which we have named Theory of Dynamic Interactions (TID). This logical deductive system allows predicting the behaviour of solid bodies subject to multiple accelerations by rotation. In the conclusions, we underline that coherence has been obtained between the principles and axioms, the developed physical-mathematical model, the obtained movement equation, the deduced laws and the realised experimental tests.
基金This research has been supported by the National Natural Science Foundation of China(Grant No.61672298 and 61373136)the National Social Science Foundation of China(Grant No.13BTQ046)+3 种基金the High-level Introduction of Talent Scientific Research Start-up Fund of Jiangsu Police Institute(Grant No.JSPI17GKZL403)the Scientific Research Program of Jiangsu Police Institute(Grant No.2017SJYZQ01)the Science and Technology Plan Projects of Jiangsu Province(Grant No.BE2017067)and the Research Foundation for Humanities and Social Sciences of Ministry of Education of China(Grant No.15YJAZH016).
文摘Considering dynamical disease spreading network consisting of moving individuals,a new double-layer network is constructed,one where the information dissemination process takes place and the other where the dynamics of disease spreading evolves.On the basis of Markov chains theory,a new model characterizing the coupled dynamics between information dissemination and disease spreading in populations of moving agents is established and corresponding state probability equations are formulated to describe the probability in each state of every node at each moment.Monte Carlo simulations are performed to characterize the interaction process between information and disease spreading and investigate factors that influence spreading dynamics.Simulation results show that the increasing of information transmission rate can reduce the scale of disease spreading in some degree.Shortening infection period and strengthening consciousness for self-protection by decreasing individual’s scope of activity both can effectively reduce the final refractory density for the disease but have less effect on the information dissemination.In addition,the increasing of vaccination rate or decreasing of long-range travel can also reduce the scale of disease spreading.
基金This project is financially supported by the National Natural Science Foundation of China
文摘An approximate method is presented to investigate the earthquake response of the fluid-single leg (shortened for S. L.) gravity platform-soil interaction system. By assuming a suitable form of the velocity potential of the radiation waves and by using the motion equation and the boundary conditions, the unknown coefficients can be obtained. Thereafter the function of frequency for the interaction system may also be obtained. In this paper, the difference of the system dynamic response between rigid foundation is analyzed and the influences of the various foundation geometric dimension and the various water-depth on the hydrodynamic loading and dynamic response of the system is illustrated.
文摘In this paper, we present evidence to show that the dynamics of rigid solid bodies is not a closed discipline, particularly in the field of rotational dynamics. From the observation of bodies with intrinsic rotation in our universe, our research group proposes new dynamic hypotheses that explain the behaviour observed when these bodies are subject to new simultaneous non-coaxial rotations. A new gyroscopic conical pendulum was designed for this purpose. Experimental tests initially conducted with this new gyroscopic conical pendulum were repeated for their recording on video, which accompanied this paper for better understanding thereof. These experimental tests positively confirm the new Theory of Dynamic Interactions, and its dynamic laws, which help us to understand the behaviour of this pendulum and, in general, that of the baryonic mass when it is subject to non-coaxial simultaneous rotations. It thus provides a better understanding of the nature and the dynamic behaviour of our universe.
文摘Even today, with the great progress that has been made in the scientific, technological and computational fields, we are still stunned by the devastating effects brought about by atmospheric phenomena. This paper aims to propose new hypotheses in the field of dynamics to enhance our understanding of the behaviour of atmospheric disturbances caused by rotating winds. I believe that the criteria of classical dynamics that are applied to vortex systems in the atmosphere should be rigorously reviewed. I propose to establish new hypotheses in the field of dynamics, in order to better interpret rotation in nature. These hypotheses have been structured into a new theory that has been tested experimentally by both ourselves and third parties, with positive results. I propose to use the Theory of Dynamic Interactions (TDI) to interpret the behaviour of systems undergoing successive rotations around different axes—which we will refer to as non-coaxial rotations. I hold that this theory applies to air masses and groups of particles in suspension that are accelerated by rotations. Accordingly, it should be used to interpret the behaviour of tornadoes, cyclones and hurricanes. I believe that this proposal could enhance our understanding of these atmospheric phenomena and improve predictions about them.
文摘This paper analyses the modal interactions in the nonlinear, size-dependent dynamics of geometrically imperfect microplates. Based on the modified couple stress theory,the equations of motion for the in-plane and out-of-plane motions are obtained employing the von Kármán plate theory as well as Kirchhoff's hypotheses by means of the Lagrange equations. The equations of motions are solved using the pseudo-arclength continuation technique and direct timeintegration method. The system parameters are tuned to the values associated with modal interactions, and then nonlinear resonant responses and energy transfer are analysed.Nonlinear motion characteristics are shown in the form of frequency-response and force-response curves, time histories, phase-plane portraits, and fast Fourier transforms.
基金Supported by the National Natural Science Foundation(10702009)
文摘Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.