This paper is based on the partnership between China’s higher vocational colleges and industry, and obtains a large number of data on industry-college partnerships through case analysis, interviews and questionnaires...This paper is based on the partnership between China’s higher vocational colleges and industry, and obtains a large number of data on industry-college partnerships through case analysis, interviews and questionnaires. This paper analyzes the main factors that affect industry-college partnerships and the current problems and challenges, then puts forward the solutions.展开更多
The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load us...The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.展开更多
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru...Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.展开更多
Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their spe...Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.展开更多
In recent years,characteristics of the good lan-guage learner have been identified.It has been pro-posed that learning strategies based on these character-istics can be taught to students and a number of mate-rials fo...In recent years,characteristics of the good lan-guage learner have been identified.It has been pro-posed that learning strategies based on these character-istics can be taught to students and a number of mate-rials for learner training are available.However,published data and my research indicate that successin language learning may be more complex than suchan approach would suggest.Attempts to translate thetheory behind learner training into practice have pro-duced only qualified success.Among some of the fac-tors complicating the implementation of learner train-ing are motivation and attitudes,the cultural or edu-cational background of students,students’andteachers’beliefs about language learning,and cogni-tive styles.Therefore,teachers should approach theimplementation of learner training with caution.展开更多
The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of au...The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition(ASR) systems.In this overview paper,we review the techniques proposed in the last two decades in attacking this problem.We focus our discussions on the speech separation problem given its central role in the cocktail party environment,and describe the conventional single-channel techniques such as computational auditory scene analysis(CASA),non-negative matrix factorization(NMF) and generative models,the conventional multi-channel techniques such as beamforming and multi-channel blind source separation,and the newly developed deep learning-based techniques,such as deep clustering(DPCL),the deep attractor network(DANet),and permutation invariant training(PIT).We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment.We argue effectively exploiting information in the microphone array,the acoustic training set,and the language itself using a more powerful model.Better optimization ob jective and techniques will be the approach to solving the cocktail party problem.展开更多
文摘This paper is based on the partnership between China’s higher vocational colleges and industry, and obtains a large number of data on industry-college partnerships through case analysis, interviews and questionnaires. This paper analyzes the main factors that affect industry-college partnerships and the current problems and challenges, then puts forward the solutions.
基金the National Natural Science Foundation of China(51225804,U1234204,51222803,51178418)for the financial supports
文摘The magnitude of dynamic load produced by high-speed trains depends on many factors,of which train speed is the most critical one.However,it is quite difficult to determine the effect of train speed on dynamic load using the theoretical methods due to the complexity of the interaction between vehicle and track-subgrade.Thus large-scale model test has gradually become an important approach for studying dynamic responses of ballastless track-subgrade of high-speed railway.In this study,a full-scale model of ballastless track-subgrade was constructed in accordance with the design and construction standards for Shanghai-Nanjing intercity high-speed railway line firstly.Then,the dynamic strain of slab and the dynamic earth pressure of subgrade were measured by conducting single wheel axle excitation test.In addition,the relationship between the dynamic load magnification factor(DLF) and the train speed was obtained.Finally,the DLF of track-subgrade under different train speeds was proposed,similar to that given by German Railway Standard.
基金supported by the JSPSKAKENHI Grant-in-Aid for Scientific Research(B),Grant Numbers24700572 and 30614276
文摘Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.
文摘Background:Internal tibial loading is influenced by modifiable factors with implications for the risk of stress injury.Runners encounter varied surface steepness(gradients)when running outdoors and may adapt their speed according to the gradient.This study aimed to quantify tibial bending moments and stress at the anterior and posterior peripheries when running at different speeds on surfaces of different gradients.Methods:Twenty recreational runners ran on a treadmill at 3 different speeds(2.5 m/s,3.0 m/s,and 3.5 m/s)and gradients(level:0%;uphill:+5%,+10%,and+15%;downhill:-5%,-10%,and-15%).Force and marker data were collected synchronously throughout.Bending moments were estimated at the distal third centroid of the tibia about the medial-lateral axis by ensuring static equilibrium at each 1%of stance.Stress was derived from bending moments at the anterior and posterior peripheries by modeling the tibia as a hollow ellipse.Two-way repeated-measures analysis of variance were conducted using both functional and discrete statistical analyses.Results:There were significant main effects for running speed and gradient on peak bending moments and peak anterior and posterior stress.Higher running speeds resulted in greater tibial loading.Running uphill at+10%and+15%resulted in greater tibial loading than level running.Running downhill at-10%and-15%resulted in reduced tibial loading compared to level running.There was no difference between+5%or-5%and level running.Conclusion:Running at faster speeds and uphill on gradients≥+10%increased internal tibial loading,whereas slower running and downhill running on gradients≥-10%reduced internal loading.Adapting running speed according to the gradient could be a protective mechanism,providing runners with a strategy to minimize the risk of tibial stress injuries.
文摘In recent years,characteristics of the good lan-guage learner have been identified.It has been pro-posed that learning strategies based on these character-istics can be taught to students and a number of mate-rials for learner training are available.However,published data and my research indicate that successin language learning may be more complex than suchan approach would suggest.Attempts to translate thetheory behind learner training into practice have pro-duced only qualified success.Among some of the fac-tors complicating the implementation of learner train-ing are motivation and attitudes,the cultural or edu-cational background of students,students’andteachers’beliefs about language learning,and cogni-tive styles.Therefore,teachers should approach theimplementation of learner training with caution.
基金supported by the Tencent and Shanghai Jiao Tong University Joint Project
文摘The cocktail party problem,i.e.,tracing and recognizing the speech of a specific speaker when multiple speakers talk simultaneously,is one of the critical problems yet to be solved to enable the wide application of automatic speech recognition(ASR) systems.In this overview paper,we review the techniques proposed in the last two decades in attacking this problem.We focus our discussions on the speech separation problem given its central role in the cocktail party environment,and describe the conventional single-channel techniques such as computational auditory scene analysis(CASA),non-negative matrix factorization(NMF) and generative models,the conventional multi-channel techniques such as beamforming and multi-channel blind source separation,and the newly developed deep learning-based techniques,such as deep clustering(DPCL),the deep attractor network(DANet),and permutation invariant training(PIT).We also present techniques developed to improve ASR accuracy and speaker identification in the cocktail party environment.We argue effectively exploiting information in the microphone array,the acoustic training set,and the language itself using a more powerful model.Better optimization ob jective and techniques will be the approach to solving the cocktail party problem.