期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Information fusion of train speed and distance measurements based on fuzzy adaptive Kalman filter algorithm 被引量:1
1
作者 FAN Ze yuan DONG Yu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第3期286-292,共7页
The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined spe... The measurement accuracy of speed and distance in high speed train directly affects the control precision and driving efficiency of train control system. To improve the capability of train self control, a combined speed measurement and positioning method based on speed sensor and radar which is assisted by global positioning system(GPS) is proposed to improve the accuracy of measurement and reduce the dependence on the ground equipment. In consideration of the fact that the filtering precision of Kalman filter will decrease when the statistical characteristics are changing, this paper uses fuzzy comprehensive evaluation method to evaluate the sub filter, and information distribution coefficients are dynamically adjusted according to filtering reliability, which can improve the fusion accuracy and fault tolerance of the system. The sub filter is required to carry on the covariance shaping adaptive filtering when it is in the suboptimal state. The adjustment factor of error covariance is obtained according to the minimized cost function, which can improve the matching degree between the measured residual variance and the system recursive residual. The simulation results show that the improved filter algorithm can track the changes of the system effectively, enhance the filtering accuracy significantly, and improve the measurement accuracies of train speed and distance. 展开更多
关键词 information fusion federated Kalman filter fuzzy comprehensive evaluation train speed and distance measurements
下载PDF
Particle Filter and Its Application in the Integrated Train Speed Measurement 被引量:3
2
作者 ZHANG Liang BAO Qilian +3 位作者 CUI Ke JIANG Yaodong XU Haigui DU Yuding 《Journal of Shanghai Jiaotong university(Science)》 EI 2019年第1期130-136,共7页
Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unsc... Particle filter(PF) can solve the problem of state estimation under strong non-linear non-Gaussian noise condition with respect to traditional Kalman filter(KF) and those improved KFs such as extended KF(EKF) and unscented KF(UKF). However, problems such as particle depletion and particle degradation affect the performance of PF. Optimizing the particle set to high likelihood region with intelligent optimization algorithm results in a more reasonable distribution of the sampling particles and more accurate state estimation. In this paper, a novel bird swarm algorithm based PF(BSAPF) is presented. Firstly, different behavior models are established by emulating the predation, flight, vigilance and follower behavior of the birds. Then, the observation information is introduced into the optimization process of the proposal distribution with the design of fitness function. In order to prevent particles from getting premature(being stuck into local optimum) and increase the diversity of particles, Lévy flight is designed to increase the randomness of particle's movement. Finally,the proposed algorithm is applied to estimate the speed of the train under the condition that the measurement noise of the wheel sensor is non-Gaussian distribution. Simulation study and experimental results both show that BSAPF is more accurate and has more effective particle number as compared with PF and UKF, demonstrating the promising performance of the method. 展开更多
关键词 particle filter(PF) bird swarm algorithm fitness function Lévy flight proposal distribution integrated train speed measurement
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部