Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices...Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.展开更多
Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese M...Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.展开更多
Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类...Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。展开更多
As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English languag...As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English language learning. The author tries to adopt specific meta-cognitive strategies to facilitate students' autonomy in learning by improving learners' capacities in study planning or management, monitoring and evaluating in learning to raise their consciousness and ability in autonomy, and lay a foundation for life-long learning.展开更多
The mango, a fruit of immense economic and dietary significance in numerous tropical and subtropical regions, plays a pivotal role in our agricultural landscape. Accurate identification is not just a necessity, but a ...The mango, a fruit of immense economic and dietary significance in numerous tropical and subtropical regions, plays a pivotal role in our agricultural landscape. Accurate identification is not just a necessity, but a crucial step for effective classification, sorting, and marketing. This study delves into the potential of machine learning for this task, comparing the performance of four models: MobileNetV2, Xception, VGG16, and ResNet50V2. These models were trained on a dataset of annotated mango images, and their performance was evaluated using precision, accuracy, F1 score, and recall, which are standard metrics for image classification. The Xception model, with its exceptional performance, outshone the other models on all performance indicators. It achieved a staggering accuracy of 99.47%, an F1 score of 99.43%, and a recall of 99.43%, showcasing its remarkable ability to accurately identify mango varieties. MobileNetV2 followed closely with performances of 98.95% accuracy, 98.85% F1 score, and 98.86% recall. ResNet50V2 also delivered satisfactory results with 97.39% accuracy, 97.08% F1 score, and 97.17% recall. VGG16, however, was the least effective, with a precision rate of 83.25%, an F1 score of 83.25%, and a recall of 85.47%. These results confirm the superiority of the Xception model in detecting mango varieties. Its advanced architecture allows it to capture more distinguishing features of mango images, leading to greater precision and reliability. Xception’s robustness in identifying true positives is another advantage, minimizing false positives and contributing to more accurate classification. This study highlights the promising potential of machine learning, particularly the Xception model, for accurately identifying mango varieties.展开更多
Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, wh...Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, which combines the advantages of several machine learning models. The ensemble is made up of various base models, such as Decision Trees, K-Nearest Neighbors (KNN), Multi-Layer Perceptrons (MLP), and Naive Bayes, each of which offers a distinct perspective on the properties of the data. The research adheres to a methodical workflow that begins with thorough data preprocessing to guarantee the accuracy and applicability of the data. In order to extract useful attributes from network traffic data—which are essential for efficient model training—feature engineering is used. The ensemble approach combines these models by training a Logistic Regression model meta-learner on base model predictions. In addition to increasing prediction accuracy, this tiered approach helps get around the drawbacks that come with using individual models. High accuracy, precision, and recall are shown in the model’s evaluation of a network intrusion dataset, indicating the model’s efficacy in identifying malicious activity. Cross-validation is used to make sure the models are reliable and well-generalized to new, untested data. In addition to advancing cybersecurity, the research establishes a foundation for the implementation of flexible and scalable intrusion detection systems. This hybrid, stacked ensemble model has a lot of potential for improving cyberattack prevention, lowering the likelihood of cyberattacks, and offering a scalable solution that can be adjusted to meet new threats and technological advancements.展开更多
Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservati...Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.展开更多
This paper mainly deals with the comprehensive knowledge system of learning strategy.Then it tries to probe the steps of strategy training and it's significance to English teaching.
In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies trai...In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies training in the field of English teaching practice still remains disputable. This essay first introduces the different reactions towards the field; then advances the idea of combining English teaching strategies with English learning strategies attempting the implementation of learning strategies training in the classroom teaching. Finally, some thinking produced in the process of practicing the strategies training is raised to reexamine this teaching mode.展开更多
In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-vio...In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.展开更多
Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,i...Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,in case of adversarial attacks,that cause misclassification by introducing imperceptible perturbation on input samples,performance of machine learning-based intrusion detection systems is greatly affected.Though such problems have widely been discussed in image processing domain,very few studies have investigated network intrusion detection systems and proposed corresponding defence.In this paper,we attempt to fill this gap by using adversarial attacks on standard intrusion detection datasets and then using adversarial samples to train various machine learning algorithms(adversarial training)to test their defence performance.This is achieved by first creating adversarial sample based on Jacobian-based Saliency Map Attack(JSMA)and Fast Gradient Sign Attack(FGSM)using NSLKDD,UNSW-NB15 and CICIDS17 datasets.The study then trains and tests JSMA and FGSM based adversarial examples in seen(where model has been trained on adversarial samples)and unseen(where model is unaware of adversarial packets)attacks.The experiments includes multiple machine learning classifiers to evaluate their performance against adversarial attacks.The performance parameters include Accuracy,F1-Score and Area under the receiver operating characteristic curve(AUC)Score.展开更多
It is becoming increasingly prevalent in digital learning research to encompass an array of different meanings,spaces,processes,and teaching strategies for discerning a global perspective on constructing the student l...It is becoming increasingly prevalent in digital learning research to encompass an array of different meanings,spaces,processes,and teaching strategies for discerning a global perspective on constructing the student learning experience.Multimodality is an emergent phenomenon that may influence how digital learning is designed,especially when employed in highly interactive and immersive learning environments such as Virtual Reality(VR).VR environments may aid students'efforts to be active learners through consciously attending to,and reflecting on,critique leveraging reflexivity and novel meaning-making most likely to lead to a conceptual change.This paper employs eleven industrial case-studies to highlight the application of multimodal VR-based teaching and training as a pedagogically rich strategy that may be designed,mapped and visualized through distinct VR-design elements and features.The outcomes of the use cases contribute to discern in-VR multimodal teaching as an emerging discourse that couples system design-based paradigms with embodied,situated and reflective praxis in spatial,emotional and temporal VR learning environments.展开更多
Objective: To study effects of behavior training on learning, memory and the expression of NR2B, GluR1 in hippocampus of rat' s offspring with fetal growth restriction(FGR). Methods: The rat model of FGR was esta...Objective: To study effects of behavior training on learning, memory and the expression of NR2B, GluR1 in hippocampus of rat' s offspring with fetal growth restriction(FGR). Methods: The rat model of FGR was established by passive smoking method. The rats offspring were divided into the FGR group and the control group, then randomly divided into the trained and untrained group, respectively. Morris water maze test was proceeded on postnatal month(PM2/4) as a behavior training method, then the learning-memory of rats was detected through dark-avoidance and step-down tests. The expressions of NR2B and GluR1 subunits in hippocampal CA1 and CA3 areas were detected by immunohistochemical method. Results: In the dark-avoidance and step-down tests, the performance record of rats with FGR was worse than that of control rats, and the behavior-trained rats was better than the untrained rats, when the FGR model and training factors were analyzed singly. The model factor and training factor had significant interaction(P 〈 0.05). The expressions of NR2B and GluR1 subunits in hippocampal CA1 and CA3 areas of rats with FGR reduced. In contrast, the expressions of GluR1 and NR2B subunits in CA1 area of behavior-trained rats increased, when the FGR model and training factors were analyzed singly. Conclusion: These findings suggested that the effect of behavior training on the expressions of NR2B and GluR1 subunits in CA1 area should be the mechanistic basis for the training-induced improvement in learning-memory abilities.展开更多
Objective: This study aimed to determine variables associated (predictors and correlates) with the learning of assessment and supportive skills in the context of a communication skills training for medical residents. ...Objective: This study aimed to determine variables associated (predictors and correlates) with the learning of assessment and supportive skills in the context of a communication skills training for medical residents. Methods: Learning was measured by comparing residents’ communication skills in a simulated consultation before and after a communication skills training. Communication skills were transcribed and tagged with a computer-assisted program. Potential variables associated with learning (residents’ characteristics, contextual characteristics and pre-training communication skills) were measured before the training and entered in regression analysis. Results: Fifty-six residents followed the training between 2002 and 2006. Poor pre-training assessment and supportive skills predicted the respective learning of these skills. Better assessment skills’ learning was predicted by copings (i.e. lower level of emotional coping), lower levels of self-efficacy and depersonalization. Better supportive skills’ learning was predicted by a lower work experience and associated with a higher training attendance rate. Conclusions: Predictors and correlates of assessment and supportive skills learning were different. Trainers needed to detect certain residents’ characteristics (i.e. depersonalization) in order to optimize assessment skills learning. Trainers needed to be aware that supportive skills are difficult to learn and to teach and may need more training hours.展开更多
Objective: To investigate the effect of behavior training on the learning and memory of young rats with fetal growth restriction (FGR). Methods: The model of FGR was established by passive smoking method to pregnant r...Objective: To investigate the effect of behavior training on the learning and memory of young rats with fetal growth restriction (FGR). Methods: The model of FGR was established by passive smoking method to pregnant rats. The new-born rats were divided into FGR group and normal group, and then randomly subdivided into trained and untrained group respectively. Morris water maze behavior training was performed on postnatal months 2 and 4, then learning and memory abilities of young rats were measured by dark-avoidance testing and step-down testing. Results: In the dark-avoidance and step-down testing, the young rats’ performance of FGR group was worse than that of control group, and the trained group was better than the untrained group significantly. Conclusion: FGR young rats have descended learning and memory abilities. Behavior training could improve the young rats’ learning and memory abilities, especially for the FGR young rats.展开更多
基金supported by the National Natural Science Foundation of China(62171088,U19A2052,62020106011)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(ZYGX2021YGLH215,ZYGX2022YGRH005)。
文摘Deep neural networks(DNNs)have achieved great success in many data processing applications.However,high computational complexity and storage cost make deep learning difficult to be used on resource-constrained devices,and it is not environmental-friendly with much power cost.In this paper,we focus on low-rank optimization for efficient deep learning techniques.In the space domain,DNNs are compressed by low rank approximation of the network parameters,which directly reduces the storage requirement with a smaller number of network parameters.In the time domain,the network parameters can be trained in a few subspaces,which enables efficient training for fast convergence.The model compression in the spatial domain is summarized into three categories as pre-train,pre-set,and compression-aware methods,respectively.With a series of integrable techniques discussed,such as sparse pruning,quantization,and entropy coding,we can ensemble them in an integration framework with lower computational complexity and storage.In addition to summary of recent technical advances,we have two findings for motivating future works.One is that the effective rank,derived from the Shannon entropy of the normalized singular values,outperforms other conventional sparse measures such as the?_1 norm for network compression.The other is a spatial and temporal balance for tensorized neural networks.For accelerating the training of tensorized neural networks,it is crucial to leverage redundancy for both model compression and subspace training.
文摘Objective: To explore the application effect of flipped classroom combined with problem-based learning teaching method in clinical skills teaching of standardized training for resident doctors of traditional Chinese Medicine. Methods: The study used the experimental control method. The study lasted from September to November 2022. The subjects of this study were 49 students of standardized training for resident doctors of traditional Chinese Medicine from grades 2020, 2021 and 2022 of Dazhou integrated TCM & Western Medicine Hospital. They were randomly divided into experiment group (25) and control group (24). The experiment group adopted flipped classroom combined with problem-based learning teaching method, and the control group adopted traditional teaching method. The teaching content was 4 basic clinical skill projects, including four diagnoses of traditional Chinese Medicine, cardiopulmonary resuscitation, dressing change procedure, acupuncture and massage. The evaluation method was carried out by comparing the students’ performance and a self-designed questionnaire was used to investigate the students’ evaluation of the teaching method. Results: The test scores of total scores in the experimental group (90.12 ± 5.89) were all higher than those in the control group (81.47 ± 7.96) (t = 4.53, P P Conclusions: The teaching process of the flipped classroom combined with problem-based learning teaching method is conducive to improving the efficiency of classroom teaching, cultivating students’ self-learning ability, and enhancing students’ willingness to learn.
文摘Tri-training利用无标签数据进行分类可有效提高分类器的泛化能力,但其易将无标签数据误标,从而形成训练噪声。提出一种基于密度峰值聚类的Tri-training(Tri-training with density peaks clustering,DPC-TT)算法。密度峰值聚类通过类簇中心和局部密度可选出数据空间结构表现较好的样本。DPC-TT算法采用密度峰值聚类算法获取训练数据的类簇中心和样本的局部密度,对类簇中心的截断距离范围内的样本认定为空间结构表现较好,标记为核心数据,使用核心数据更新分类器,可降低迭代过程中的训练噪声,进而提高分类器的性能。实验结果表明:相比于标准Tritraining算法及其改进算法,DPC-TT算法具有更好的分类性能。
文摘As the ultimate goal of education, autonomy in language learning has aroused a lot of attention from scholars at home and abroad. While in universities of China, students do not have strong autonomy in English language learning. The author tries to adopt specific meta-cognitive strategies to facilitate students' autonomy in learning by improving learners' capacities in study planning or management, monitoring and evaluating in learning to raise their consciousness and ability in autonomy, and lay a foundation for life-long learning.
文摘The mango, a fruit of immense economic and dietary significance in numerous tropical and subtropical regions, plays a pivotal role in our agricultural landscape. Accurate identification is not just a necessity, but a crucial step for effective classification, sorting, and marketing. This study delves into the potential of machine learning for this task, comparing the performance of four models: MobileNetV2, Xception, VGG16, and ResNet50V2. These models were trained on a dataset of annotated mango images, and their performance was evaluated using precision, accuracy, F1 score, and recall, which are standard metrics for image classification. The Xception model, with its exceptional performance, outshone the other models on all performance indicators. It achieved a staggering accuracy of 99.47%, an F1 score of 99.43%, and a recall of 99.43%, showcasing its remarkable ability to accurately identify mango varieties. MobileNetV2 followed closely with performances of 98.95% accuracy, 98.85% F1 score, and 98.86% recall. ResNet50V2 also delivered satisfactory results with 97.39% accuracy, 97.08% F1 score, and 97.17% recall. VGG16, however, was the least effective, with a precision rate of 83.25%, an F1 score of 83.25%, and a recall of 85.47%. These results confirm the superiority of the Xception model in detecting mango varieties. Its advanced architecture allows it to capture more distinguishing features of mango images, leading to greater precision and reliability. Xception’s robustness in identifying true positives is another advantage, minimizing false positives and contributing to more accurate classification. This study highlights the promising potential of machine learning, particularly the Xception model, for accurately identifying mango varieties.
文摘Network intrusion detection systems need to be updated due to the rise in cyber threats. In order to improve detection accuracy, this research presents a strong strategy that makes use of a stacked ensemble method, which combines the advantages of several machine learning models. The ensemble is made up of various base models, such as Decision Trees, K-Nearest Neighbors (KNN), Multi-Layer Perceptrons (MLP), and Naive Bayes, each of which offers a distinct perspective on the properties of the data. The research adheres to a methodical workflow that begins with thorough data preprocessing to guarantee the accuracy and applicability of the data. In order to extract useful attributes from network traffic data—which are essential for efficient model training—feature engineering is used. The ensemble approach combines these models by training a Logistic Regression model meta-learner on base model predictions. In addition to increasing prediction accuracy, this tiered approach helps get around the drawbacks that come with using individual models. High accuracy, precision, and recall are shown in the model’s evaluation of a network intrusion dataset, indicating the model’s efficacy in identifying malicious activity. Cross-validation is used to make sure the models are reliable and well-generalized to new, untested data. In addition to advancing cybersecurity, the research establishes a foundation for the implementation of flexible and scalable intrusion detection systems. This hybrid, stacked ensemble model has a lot of potential for improving cyberattack prevention, lowering the likelihood of cyberattacks, and offering a scalable solution that can be adjusted to meet new threats and technological advancements.
文摘Latent variable models can effectively determine the condition of essential rotating machinery without needing labeled data.These models analyze vibration data via an unsupervised learning strategy.Temporal preservation is necessary to obtain an informative latent manifold for the fault diagnosis task.In a temporalpreserving context,two approaches exist to develop a condition-monitoring methodology:offline and online.For latent variable models,the available training modes are not different.While many traditional methods use offline training,online training can dynamically adjust the latent manifold,possibly leading to better fault signature extraction from the vibration data.This study explores online training using temporal-preserving latent variable models.Within online training,there are two main methods:one focuses on reconstructing data and the other on interpreting the data components.Both are considered to evaluate how they diagnose faults over time.Using two experimental datasets,the study confirms that models from both training modes can detect changes in machinery health and identify faults even under varying conditions.Importantly,the complementarity of offline and online models is emphasized,reassuring their versatility in fault diagnostics.Understanding the implications of the training approach and the available model formulations is crucial for further research in latent variable modelbased fault diagnostics.
文摘This paper mainly deals with the comprehensive knowledge system of learning strategy.Then it tries to probe the steps of strategy training and it's significance to English teaching.
文摘In contemporary English teaching, the study of English learning strategies has become one of the main concerns in teachers' teaching and research processes. The necessity of implementation of learning strategies training in the field of English teaching practice still remains disputable. This essay first introduces the different reactions towards the field; then advances the idea of combining English teaching strategies with English learning strategies attempting the implementation of learning strategies training in the classroom teaching. Finally, some thinking produced in the process of practicing the strategies training is raised to reexamine this teaching mode.
基金supported by grants from the National Natural Science Foundation of China(31771243)the Fok Ying Tong Education Foundation(141113)to Aiguo Chen.
文摘In recent years evidence has emerged suggesting that Mini-basketball training program(MBTP)can be an effec-tive intervention method to improve social communication(SC)impairments and restricted and repetitive beha-viors(RRBs)in preschool children suffering from autism spectrum disorder(ASD).However,there is a considerable degree if interindividual variability concerning these social outcomes and thus not all preschool chil-dren with ASD profit from a MBTP intervention to the same extent.In order to make more accurate predictions which preschool children with ASD can benefit from an MBTP intervention or which preschool children with ASD need additional interventions to achieve behavioral improvements,further research is required.This study aimed to investigate which individual factors of preschool children with ASD can predict MBTP intervention out-comes concerning SC impairments and RRBs.Then,test the performance of machine learning models in predict-ing intervention outcomes based on these factors.Participants were 26 preschool children with ASD who enrolled in a quasi-experiment and received MBTP intervention.Baseline demographic variables(e.g.,age,body,mass index[BMI]),indicators of physicalfitness(e.g.,handgrip strength,balance performance),performance in execu-tive function,severity of ASD symptoms,level of SC impairments,and severity of RRBs were obtained to predict treatment outcomes after MBTP intervention.Machine learning models were established based on support vector machine algorithm were implemented.For comparison,we also employed multiple linear regression models in statistics.Ourfindings suggest that in preschool children with ASD symptomatic severity(r=0.712,p<0.001)and baseline SC impairments(r=0.713,p<0.001)are predictors for intervention outcomes of SC impair-ments.Furthermore,BMI(r=-0.430,p=0.028),symptomatic severity(r=0.656,p<0.001),baseline SC impair-ments(r=0.504,p=0.009)and baseline RRBs(r=0.647,p<0.001)can predict intervention outcomes of RRBs.Statistical models predicted 59.6%of variance in post-treatment SC impairments(MSE=0.455,RMSE=0.675,R2=0.596)and 58.9%of variance in post-treatment RRBs(MSE=0.464,RMSE=0.681,R2=0.589).Machine learning models predicted 83%of variance in post-treatment SC impairments(MSE=0.188,RMSE=0.434,R2=0.83)and 85.9%of variance in post-treatment RRBs(MSE=0.051,RMSE=0.226,R2=0.859),which were better than statistical models.Ourfindings suggest that baseline characteristics such as symptomatic severity of 144 IJMHP,2022,vol.24,no.2 ASD symptoms and SC impairments are important predictors determining MBTP intervention-induced improvements concerning SC impairments and RBBs.Furthermore,the current study revealed that machine learning models can successfully be applied to predict the MBTP intervention-related outcomes in preschool chil-dren with ASD,and performed better than statistical models.Ourfindings can help to inform which preschool children with ASD are most likely to benefit from an MBTP intervention,and they might provide a reference for the development of personalized intervention programs for preschool children with ASD.
文摘Intrusion detection system plays an important role in defending networks from security breaches.End-to-end machine learning-based intrusion detection systems are being used to achieve high detection accuracy.However,in case of adversarial attacks,that cause misclassification by introducing imperceptible perturbation on input samples,performance of machine learning-based intrusion detection systems is greatly affected.Though such problems have widely been discussed in image processing domain,very few studies have investigated network intrusion detection systems and proposed corresponding defence.In this paper,we attempt to fill this gap by using adversarial attacks on standard intrusion detection datasets and then using adversarial samples to train various machine learning algorithms(adversarial training)to test their defence performance.This is achieved by first creating adversarial sample based on Jacobian-based Saliency Map Attack(JSMA)and Fast Gradient Sign Attack(FGSM)using NSLKDD,UNSW-NB15 and CICIDS17 datasets.The study then trains and tests JSMA and FGSM based adversarial examples in seen(where model has been trained on adversarial samples)and unseen(where model is unaware of adversarial packets)attacks.The experiments includes multiple machine learning classifiers to evaluate their performance against adversarial attacks.The performance parameters include Accuracy,F1-Score and Area under the receiver operating characteristic curve(AUC)Score.
基金Supported by ERASMUS 2016-1-FR01-KA204-024178"STEAM"Eurostars E!10431"Neurostars"FSN CIN7171116"Virtual Classroom"。
文摘It is becoming increasingly prevalent in digital learning research to encompass an array of different meanings,spaces,processes,and teaching strategies for discerning a global perspective on constructing the student learning experience.Multimodality is an emergent phenomenon that may influence how digital learning is designed,especially when employed in highly interactive and immersive learning environments such as Virtual Reality(VR).VR environments may aid students'efforts to be active learners through consciously attending to,and reflecting on,critique leveraging reflexivity and novel meaning-making most likely to lead to a conceptual change.This paper employs eleven industrial case-studies to highlight the application of multimodal VR-based teaching and training as a pedagogically rich strategy that may be designed,mapped and visualized through distinct VR-design elements and features.The outcomes of the use cases contribute to discern in-VR multimodal teaching as an emerging discourse that couples system design-based paradigms with embodied,situated and reflective praxis in spatial,emotional and temporal VR learning environments.
基金the National Natural Science Foundationof China(30471826)
文摘Objective: To study effects of behavior training on learning, memory and the expression of NR2B, GluR1 in hippocampus of rat' s offspring with fetal growth restriction(FGR). Methods: The rat model of FGR was established by passive smoking method. The rats offspring were divided into the FGR group and the control group, then randomly divided into the trained and untrained group, respectively. Morris water maze test was proceeded on postnatal month(PM2/4) as a behavior training method, then the learning-memory of rats was detected through dark-avoidance and step-down tests. The expressions of NR2B and GluR1 subunits in hippocampal CA1 and CA3 areas were detected by immunohistochemical method. Results: In the dark-avoidance and step-down tests, the performance record of rats with FGR was worse than that of control rats, and the behavior-trained rats was better than the untrained rats, when the FGR model and training factors were analyzed singly. The model factor and training factor had significant interaction(P 〈 0.05). The expressions of NR2B and GluR1 subunits in hippocampal CA1 and CA3 areas of rats with FGR reduced. In contrast, the expressions of GluR1 and NR2B subunits in CA1 area of behavior-trained rats increased, when the FGR model and training factors were analyzed singly. Conclusion: These findings suggested that the effect of behavior training on the expressions of NR2B and GluR1 subunits in CA1 area should be the mechanistic basis for the training-induced improvement in learning-memory abilities.
文摘Objective: This study aimed to determine variables associated (predictors and correlates) with the learning of assessment and supportive skills in the context of a communication skills training for medical residents. Methods: Learning was measured by comparing residents’ communication skills in a simulated consultation before and after a communication skills training. Communication skills were transcribed and tagged with a computer-assisted program. Potential variables associated with learning (residents’ characteristics, contextual characteristics and pre-training communication skills) were measured before the training and entered in regression analysis. Results: Fifty-six residents followed the training between 2002 and 2006. Poor pre-training assessment and supportive skills predicted the respective learning of these skills. Better assessment skills’ learning was predicted by copings (i.e. lower level of emotional coping), lower levels of self-efficacy and depersonalization. Better supportive skills’ learning was predicted by a lower work experience and associated with a higher training attendance rate. Conclusions: Predictors and correlates of assessment and supportive skills learning were different. Trainers needed to detect certain residents’ characteristics (i.e. depersonalization) in order to optimize assessment skills learning. Trainers needed to be aware that supportive skills are difficult to learn and to teach and may need more training hours.
基金the National Natural Science Foundation of China(30471826)
文摘Objective: To investigate the effect of behavior training on the learning and memory of young rats with fetal growth restriction (FGR). Methods: The model of FGR was established by passive smoking method to pregnant rats. The new-born rats were divided into FGR group and normal group, and then randomly subdivided into trained and untrained group respectively. Morris water maze behavior training was performed on postnatal months 2 and 4, then learning and memory abilities of young rats were measured by dark-avoidance testing and step-down testing. Results: In the dark-avoidance and step-down testing, the young rats’ performance of FGR group was worse than that of control group, and the trained group was better than the untrained group significantly. Conclusion: FGR young rats have descended learning and memory abilities. Behavior training could improve the young rats’ learning and memory abilities, especially for the FGR young rats.