期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds 被引量:18
1
作者 HE Xu-hui ZUO Tai-hui +2 位作者 ZOU Yun-feng YAN Lei TANG Lin-bo 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第8期2465-2478,共14页
In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measur... In this study, experiments were carried out to investigate aerodynamic characteristics of a high-speed train on viaducts in turbulent crosswinds using a 1:25 scaled sectional model wind-tunnel testing. Pressure measurements of two typical sections, one train-head section and one train-body section, at the windward and leeward tracks were conducted under the smooth and turbulence flows with wind attack angles between-6° and 6°, and the corresponding aerodynamic force coefficients were also calculated using the integral method. The experimental results indicate that the track position affects the mean aerodynamic characteristics of the vehicle, especially for the train-body section. The fluctuating pressure coefficients at the leeward track are more significantly affected by the bridge interference compared to those at the windward track. The effect of turbulence on the train-head section is less than that on the train-body section. Additionally, the mean aerodynamic force coefficients are almost negatively correlated to wind attack angles, which is more prominent for vehicles at the leeward track. Moreover, the lateral force plays a critical role in determining the corresponding overturning moment, especially on the train-body section. 展开更多
关键词 high-speed train viaducts aerodynamic characteristics turbulent crosswinds wind attack angle train section shape track position pressure measurement
下载PDF
A Micro-coupling for Micro Mechanical Systems 被引量:1
2
作者 LI Wei ZHOU Zhixiong +1 位作者 ZHANG Bi XIAO Yunya 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期571-578,共8页
The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits t... The error motions of micro mechanical systems, such as micro-spindles, increase with the increasing of the rotational speed, which not only decreases the rotational accuracy, but also promotes instability and limits the maximum operational speed. One effective way to deal with it is to use micro-flexible couplings between the drive and driven shafts so as to reduce error motions of the driven shaft. But the conventional couplings, such as diaphragm couplings, elastomeric couplings, bellows couplings, and grooved couplings, etc, cannot be directly used because of their large and complicated structures. This study presents a novel micro-coupling that consists of a flexible coupling and a shape memory alloy(SMA)-based clamp for micro mechanical systems. It is monolithic and can be directly machined from a shaft. The study performs design optimization and provides manufacturing considerations, including thermo-mechanical training of the SMA ring for the desired Two-Way-Shape-Memory effect(TWSMe). A prototype micro-coupling and a prototype micro-spindle using the proposed coupling are fabricated and tested. The testing results show that the prototype micro-coupling can bear a torque of above 5 N · mm and an axial force of 8.5 N and be fitted with an SMA ring for clamping action at room temperature(15 ℃) and unclamping action below –5 ℃. At the same time, the prototype micro-coupling can work at a rotational speed of above 200 kr/min with the application to a high-speed precision micro-spindle. Moreover, the radial runout error of the artifact, as a substitute for the micro-tool, is less than 3 μm while that of turbine shaft is above 7 μm. It can be concluded that the micro-coupling successfully accommodates misalignment errors of the prototype micro-spindle. This research proposes a micro-coupling which is featured with an SMA ring, and it is designed to clamp two shafts, and has smooth transmission, simple assembly, compact structure, zero-maintenance and balanced motions. 展开更多
关键词 coupling clamp shape memory alloy thermo-mechanical training micro-spindle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部