In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed i...In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait.展开更多
To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary t...To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.展开更多
The irregular wellbore trajectory caused by the wellbore deviation and fluctuation makes a significant effect on the torque and drag in extending and direction drilling,especially for wellbore trajectory with obvious ...The irregular wellbore trajectory caused by the wellbore deviation and fluctuation makes a significant effect on the torque and drag in extending and direction drilling,especially for wellbore trajectory with obvious deviation in the drilling direction.As a consequence,a new quasi-three-dimensional wellbore tortuosity evaluation method is developed.The new method incorporates the effect of fluctuation frequency and amplitude of oscillating wellbore trajectory;a weight coefficient index that quantifies the effect of tortuosity of one segment trajectory to the entire trajectory;a‘Peak-Valley’principle that can decompose the irregular wellbore trajectory in various scale lengths.The studies show that the deflection angle between the segments of tortuous wellbore increases the torque and drag by strengthening the contact behaviors between the drillstring and borehole.Therefore,the deflection angle is introduced to quantify the effect of deviation in the drilling direction on wellbore tortuosity.The evaluation results of two field cases demonstrate the new method which is adapted to the wellbore trajectory fluctuating with various characteristics and can reflect the actual state of wellbore tortuosity with severe oscillation more effectively and accurately.展开更多
基金Supported by National High Technology Research and Development Program of China(863 Program)(2011AA041002)
文摘In order to solve kinematic redundancy problems of a hydraulic quadruped walking robot,which include leg dragging,sliding,impingement against the ground,an improved gait planning algorithm for this robot is proposed in this paper.First,the foot trajectory is designated as the improved composite cycloid foot trajectory.Second,the landing angle of each leg of the robot is controlled to satisfy friction cone to improve the stability performance of the robot.Then with the controllable landing angle of quadruped robot and a geometry method,the kinematic equation is derived in this paper.Finally,agait planning method of quadruped robot is proposed,a dynamic co-simulation is done with ADAMS and MATLAB,and practical experiments are conducted.The validity of the proposed algorithm is confirmed through the co-simulation and experimentation.The results show that the robot can avoid sliding,reduce impingement,and trot stably in trot gait.
基金co-supported by the National Natural Scienc Foundation of China (No. 61172182)
文摘To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.
基金This study is supported by Open Fund(PLN201921)of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)scientific research starting project of SWPU(No.2019QHZ008).
文摘The irregular wellbore trajectory caused by the wellbore deviation and fluctuation makes a significant effect on the torque and drag in extending and direction drilling,especially for wellbore trajectory with obvious deviation in the drilling direction.As a consequence,a new quasi-three-dimensional wellbore tortuosity evaluation method is developed.The new method incorporates the effect of fluctuation frequency and amplitude of oscillating wellbore trajectory;a weight coefficient index that quantifies the effect of tortuosity of one segment trajectory to the entire trajectory;a‘Peak-Valley’principle that can decompose the irregular wellbore trajectory in various scale lengths.The studies show that the deflection angle between the segments of tortuous wellbore increases the torque and drag by strengthening the contact behaviors between the drillstring and borehole.Therefore,the deflection angle is introduced to quantify the effect of deviation in the drilling direction on wellbore tortuosity.The evaluation results of two field cases demonstrate the new method which is adapted to the wellbore trajectory fluctuating with various characteristics and can reflect the actual state of wellbore tortuosity with severe oscillation more effectively and accurately.