Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p...Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.展开更多
This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse ...This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.42271448,41701531)the Key Laboratory of Land Satellite Remote Sensing Application,Ministry of Natural Resources of the People’s Republic of China(No.KLSMNRG202317)。
文摘Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning.
文摘This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.