期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Non-cooperative Space Target Estimation Algorithm Without Prior Information Dependence Based on Temporal Line of Sight Constraint
1
作者 XIAO Hui ZHU Chongrui +3 位作者 LIU Xinqi YU Yifan SHENG Qinghong YANG Rui 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期526-540,共15页
Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a p... Under single-satellite observation,the parameter estimation of the boost phase of high-precision space noncooperative targets requires prior information.To improve the accuracy without prior information,we propose a parameter estimation model of the boost phase based on trajectory plane parametric cutting.The use of the plane passing through the geo-center and the cutting sequence line of sight(LOS)generates the trajectory-cutting plane.With the coefficient of the trajectory cutting plane directly used as the parameter to be estimated,a motion parameter estimation model in space non-cooperative targets is established,and the Gauss-Newton iteration method is used to solve the flight parameters.The experimental results show that the estimation algorithm proposed in this paper weakly relies on prior information and has higher estimation accuracy,providing a practical new idea and method for the parameter estimation of space non-cooperative targets under single-satellite warning. 展开更多
关键词 motion parameter estimation estimation of impact point infrared early warning boost phase modeling trajectory database construction
下载PDF
Development and Evaluation of Intersection-Based Turning Movement Counts Framework Using Two Channel LiDAR Sensors
2
作者 Ravi Jagirdar Joyoung Lee +2 位作者 Dejan Besenski Min-Wook Kang Chaitanya Pathak 《Journal of Transportation Technologies》 2023年第4期524-544,共21页
This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse ... This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities. 展开更多
关键词 Vehicle trajectory construction Two Channel LiDAR Turning Movement Counts RTMS Smart Cities LIDAR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部