Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels....Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels. However, one research problem is still calling for solutions, how to identify the fishing vessel type based on only VMS trajectories. This problem is important because it requires the fishing vessel type as a preliminary to recognize fishing activities from VMS trajectories. This paper proposes fishing vessel type identification scheme(FVID) based only on VMS trajectories. FVID exploits feature engineering and machine learning schemes of XGBoost as its two key blocks and classifies fishing vessels into nine types. The dataset contains all the fishing vessel trajectories in the East China Sea in March 2017, including 10031 pre-registered fishing vessels and 1350 unregistered vessels of unknown types. In order to verify type identification accuracy, we first conduct a 4-fold cross-validation on the trajectories of registered fishing vessels. The classification accuracy is 95.42%. We then apply FVID to the unregistered fishing vessels to identify their types. After classifying the unregistered fishing vessel types, their fishing activities are further recognized based upon their types. At last, we calculate and compare the fishing density distribution in the East China Sea before and after applying the unregistered fishing vessels, confirming the importance of type identification of unregistered fishing vessels.展开更多
基金partially supported by National Key R&D Program (No. 2016YFC 1401900)the National Natural Science Foundation of China (Nos. 61379127, 61379128, 61572448)+1 种基金the Fundamental Research Funds for the Central Universities (No. 201713016)Qingdao National Laboratory for Marine Science and Technology Open Research Project (No. QNLM2016ORP 0405)
文摘Vessel Monitoring System(VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels. However, one research problem is still calling for solutions, how to identify the fishing vessel type based on only VMS trajectories. This problem is important because it requires the fishing vessel type as a preliminary to recognize fishing activities from VMS trajectories. This paper proposes fishing vessel type identification scheme(FVID) based only on VMS trajectories. FVID exploits feature engineering and machine learning schemes of XGBoost as its two key blocks and classifies fishing vessels into nine types. The dataset contains all the fishing vessel trajectories in the East China Sea in March 2017, including 10031 pre-registered fishing vessels and 1350 unregistered vessels of unknown types. In order to verify type identification accuracy, we first conduct a 4-fold cross-validation on the trajectories of registered fishing vessels. The classification accuracy is 95.42%. We then apply FVID to the unregistered fishing vessels to identify their types. After classifying the unregistered fishing vessel types, their fishing activities are further recognized based upon their types. At last, we calculate and compare the fishing density distribution in the East China Sea before and after applying the unregistered fishing vessels, confirming the importance of type identification of unregistered fishing vessels.