For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based o...For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based on the time-to-go weighted function. Based on the same cost function, the closed-form solutions of the guidance law were derived when the initial displacement of missile, final impact angle, heading error and target maneuver was introduced into the lag-free guidance system. To validate the closed-form solutions, the simulation of the lag-free system was done and the simulation results exactly matched the closed-form solutions and only when the exponent is greater than zero, the final acceleration approaches to zero.展开更多
To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guid...To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.展开更多
To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary t...To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.展开更多
During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-ins...During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker,but the performance of it can be better than that of the proportional guidance law.展开更多
文摘For maneuvering target, the optimal trajectory shaping guidance law which can simultaneously achieve the designed specifications on miss distance and final impact angle was deduced using optimal control theory based on the time-to-go weighted function. Based on the same cost function, the closed-form solutions of the guidance law were derived when the initial displacement of missile, final impact angle, heading error and target maneuver was introduced into the lag-free guidance system. To validate the closed-form solutions, the simulation of the lag-free system was done and the simulation results exactly matched the closed-form solutions and only when the exponent is greater than zero, the final acceleration approaches to zero.
基金Supported by the National Natural Science Foundation of China(61172182)
文摘To satisfy the terminal position and impact angel constraints,an optimal guidance problem was discussed for homing missiles. For a stationary or a slowly moving target on the ground,an extended trajectory shaping guidance lawconsidering a first-order autopilot lag( ETSG L-C FAL) was proposed. To derive the ETSG L-C FAL,a time-to-go- nth power weighted objection function was adopted and three different derivation methods were demonstrated while the Schwartz inequality method was mainly demonstrated.The performance of the ETSG L-C FAL and the ETSG L guidance laws was compared through simulation.Simulation results showthat although a first-order autopilot is introduced into the ETSG L-C FAL guidance system,the position miss distance and terminal impact angle error induced by the impact angle is zero for different guidance time.
基金co-supported by the National Natural Scienc Foundation of China (No. 61172182)
文摘To control missile's miss distance as well as terminal impact angle, by involving the timeto-go-nth power in the cost function, an extended optimal guidance law against a constant maneuvering target or a stationary target is proposed using the linear quadratic optimal control theory.An extended trajectory shaping guidance(ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile's acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.
基金supported by the National Defence Foundation of China(No.62201070404)
文摘During predation, a flying insect can form a stealth flight path. This behavior is called motion camouflage. Based on the study results of this behavior, the perception and neurology of flying insects, a novel bio-inspired guidance law is proposed for the terminal guidance for small aerial vehicle with charge-coupled device imaging seekers. The kinematics relationship between a small aerial vehicle and target is analyzed, and a two-dimensional guidance law model is established by using artificial neural networks. To compare with the proportional guidance law, the numerical simulations are carried out in the vertical plane and in the horizontal plane respectively. The simulation results show that the ballistic of the small aerial vehicle is straighter and the normal acceleration is smaller by using the bio-inspired guidance law than by using the proportional guidance law. That is to say, the bio-inspired guidance law just uses the information of the target from the imaging seeker,but the performance of it can be better than that of the proportional guidance law.