Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,i...Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.展开更多
This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of...This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.展开更多
Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PS...Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PSO algorithm optimization is studied.The kinematic diagram of redundant manipulator is created,to derive the equation of motion trajectory of redundant manipulator end.Pseudo inverse Jacobi matrix is used to solve the problem of manipulator redundancy.Based on the tracking ellipse of redundant manipulator,the tracking shape of redundant manipulator is determined with the overall tracking index as the second index,and the optimization method of tracking index is proposed.The redundant manipulator contour is located by active contour model,on this basis,combined with particle swarm optimization algorithm,the point coordinates on the circumference with the relevant joint point as the center and joint length as the radius are selected as the algorithm particles for iteration,and the optimal tracking results of the overall redundant manipulator trajectory are obtained.The experimental results show that under the proposed method,the tracking error of the redundant manipulator is low,and the error jump range is small.It shows that this method has high tracking accuracy and reliability.展开更多
Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to ...Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.展开更多
With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overc...With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.展开更多
In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the d...In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the driver through the mobile phone navigation software, which plays a more auxiliary driving role. This paper presents a method of vehicle trajectory deviation detection. Firstly, the manager customizes the trajectory planning and then uses big data technologies to match the deviation between the trajectory planning and the vehicle trajectory. Finally, it achieves the supervisory function of the manager on the vehicle track route in real-time. The results show that this method could detect the vehicle trajectory deviation quickly and accurately, and has practical application value.展开更多
To address the nonlinearities and external disturbances in unstructured and complex agricultural environments,this paper investigates an autonomous trajectory tracking control method for agricultural ground vehicles.F...To address the nonlinearities and external disturbances in unstructured and complex agricultural environments,this paper investigates an autonomous trajectory tracking control method for agricultural ground vehicles.Firstly,this paper presents the design and implementation of a lightweight,modular two-wheeled differential drive vehicle equipped with two drive wheels and two caster wheels.The vehicle comprises drive wheel modules,passive wheel modules,battery modules,a vehicle frame,a sensor system,and a control system.Secondly,a novel robust trajectory tracking method was proposed,utilizing an improved pure pursuit algorithm.Additionally,an Online Particle Swarm Optimization Continuously Tuned PID(OPSO-CTPID)controller was introduced to dynamically search for optimal control gains for the PID controller.Simulation results demonstrate the superiority of the improved pure pursuit algorithm and the OPSO-CTPID control strategy.To validate the performance,the vehicle was integrated with a seeding and fertilizing machine to realize autonomous wheat seeding in an agricultural environment.Experimental outcomes reveal that the vehicle of this study completed a seeding operation exceeding 1 km in distance.The proposed method can robustly and smoothly track the desired trajectory with an accuracy of less than 10 cm for the root mean square error(RMSE)of the curve and straight lines,given a suitable set of parameters,meeting the requirements of agricultural applications.The findings of this study hold significant reference value for subsequent research on trajectory tracking algorithms for ground-based agricultural robots.展开更多
This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references ...This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references quickly. At first, nonsingular fast terminal slidingmode control is developed, which can guarantee not only the stability but also finite-timeconvergence of the closed-loop system. As the parameters of the designed controllers playa vital role for control performance, an improved beetle antennae search algorithm is proposedto optimise them. By employing the historical information of the beetle’s antennaeand dynamically updating the step size as well as the range of its searching, the optimisingis accelerated considerably to ensure the efficiency of the quadrotor control. The superiorityof the proposed control scheme is demonstrated by simulation experiments, from whichone can see that both the error and the overshooting of the trajectory tracking are reducedeffectively.展开更多
基金Supported by Ministerial Level Advanced Research Foundation(65822576)Beijing Municipal Education Commission(KM201310858004,KM201310858001)
文摘Real-time seam tracking can improve welding quality and enhance welding efficiency during the welding process in automobile manufacturing.However,the teaching-playing welding process,an off-line seam tracking method,is still dominant in automobile industry,which is less flexible when welding objects or situation change.A novel real-time algorithm consisting of seam detection and generation is proposed to track seam.Using captured 3D points,space vectors were created between two adjacent points along each laser line and then a vector angle based algorithm was developed to detect target points on the seam.Least square method was used to fit target points to a welding trajectory for seam tracking.Furthermore,the real-time seam tracking process was simulated in MATLAB/Simulink.The trend of joint angles vs.time was logged and a comparison between the off-line and the proposed seam tracking algorithm was conducted.Results show that the proposed real-time seam tracking algorithm can work in a real-time scenario and have high accuracy in welding point positioning.
基金supported by the Brain Korea 21 Project in 2011 and MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1121-0010)
文摘This paper proposes an algorithm that extracts features of back side of the vehicle and detects the front vehicle in real-time by local feature tracking of vehicle in the continuous images.The features in back side of the vehicle are vertical and horizontal edges,shadow and symmetry.By comparing local features using the fixed window size,the features in the continuous images are tracked.A robust and fast Haarlike mask is used for detecting vertical and horizontal edges,and shadow is extracted by histogram equalization,and the sliding window method is used to compare both side templates of the detected candidates for extracting symmetry.The features for tracking are vertical edges,and histogram is used to compare location of the peak and magnitude of the edges.The method using local feature tracking in the continuous images is more robust for detecting vehicle than the method using single image,and the proposed algorithm is evaluated by continuous images obtained on the expressway and downtown.And it can be performed on real-time through applying it to the embedded system.
基金Foundation of the Robotics Laboratory, Chinese Academy of Sciences (No: RL200002)
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Car-tesian space mainly through increasing the number of knots on the path and the number of the path′s segments, which results in the heavier online computational burden for the robot controller. Aiming at overcoming this drawback, the authors propose a new kind of real-time accurate hand path tracking and joint trajectory planning method. Through selecting some extra knots on the specified hand path by a certain rule and introducing a sinusoidal function to the joint displacement equation of each segment, this method can greatly raise the path tracking accuracy of robot′s hand and does not change the number of the path′s segments. It also does not increase markedly the computational burden of robot controller. The result of simulation indicates that this method is very effective, and has important value in increasing the application of industrial robots.
基金FoundationoftheRoboticsLaboratoryChineseAcademyofSciences (No :RL2 0 0 0 0 2 )
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.
基金This work has been supported by the Ningbo National Natural Science Foundation(2019A610124)General Project of Education Department of Zhejiang Province(Y201737089).
文摘Aiming at the problem that the trajectory tracking performance of redundant manipulator corresponding to the target position is difficult to optimize,the trajectory tracking method of redundant manipulator based on PSO algorithm optimization is studied.The kinematic diagram of redundant manipulator is created,to derive the equation of motion trajectory of redundant manipulator end.Pseudo inverse Jacobi matrix is used to solve the problem of manipulator redundancy.Based on the tracking ellipse of redundant manipulator,the tracking shape of redundant manipulator is determined with the overall tracking index as the second index,and the optimization method of tracking index is proposed.The redundant manipulator contour is located by active contour model,on this basis,combined with particle swarm optimization algorithm,the point coordinates on the circumference with the relevant joint point as the center and joint length as the radius are selected as the algorithm particles for iteration,and the optimal tracking results of the overall redundant manipulator trajectory are obtained.The experimental results show that under the proposed method,the tracking error of the redundant manipulator is low,and the error jump range is small.It shows that this method has high tracking accuracy and reliability.
文摘Manual monitoring and seam tracking through watching weld pool images in real-time, by naked eyes or by industrial TV, are experience-depended, subjective, labor intensive, and sometimes biased. So it is necessary to realize the automation of computer-aided seam tracking. A PAW (plasma arc welding) seam tracking system was developed, which senses the molten pool and the seam in one frame by a vision sensor, and then detects the seam deviation to adjust the work piece motion adaptively to the seam position sensed by vision sensor. A novel molten pool area image-processing algorithm based on machine vision was proposed. The algorithm processes each image at the speed of 20 frames/second in real-time to extract three feature variables to get the seam deviation. It is proved experimentally that the algorithm is very fast and effective. Issues related to the algorithm are also discussed.
基金This work was supported in part by the National Nature Science Foundation of China(51922059)in part by the Beijing Natural Science Foundation(JQ19010)in part by the China Postdoctoral Science Foundation(2021T140371).
文摘With regard to precision/ultra-precision motion systems,it is important to achieve excellent tracking performance for various trajectory tracking tasks even under uncertain external disturbances.In this paper,to overcome the limitation of robustness to trajectory variations and external disturbances in offline feedforward compensation strategies such as iterative learning control(ILC),a novel real-time iterative compensation(RIC)control framework is proposed for precision motion systems without changing the inner closed-loop controller.Specifically,the RIC method can be divided into two parts,i.e.,accurate model prediction and real-time iterative compensation.An accurate prediction model considering lumped disturbances is firstly established to predict tracking errors at future sampling times.In light of predicted errors,a feedforward compensation term is developed to modify the following reference trajectory by real-time iterative calculation.Both the prediction and compen-sation processes are finished in a real-time motion control sampling period.The stability and convergence of the entire control system after real-time iterative compensation is analyzed for different conditions.Various simulation results consistently demonstrate that the proposed RIC framework possesses satisfactory dynamic regulation capability,which contributes to high tracking accuracy comparable to ILC or even better and strong robustness.
文摘In the vehicle trajectory application system, it is often necessary to detect whether the vehicle deviates from the specified route. Trajectory planning in the traditional route deviation detection is defined by the driver through the mobile phone navigation software, which plays a more auxiliary driving role. This paper presents a method of vehicle trajectory deviation detection. Firstly, the manager customizes the trajectory planning and then uses big data technologies to match the deviation between the trajectory planning and the vehicle trajectory. Finally, it achieves the supervisory function of the manager on the vehicle track route in real-time. The results show that this method could detect the vehicle trajectory deviation quickly and accurately, and has practical application value.
基金Jiangsu Provincial Key Research and Development Program(Grant No.BE2017301)Jiangsu Provincial Key Research and Development Program(Grant No.BE2022363)+2 种基金Project of Jiangsu Modern Agricultural Machinery Equipment&Technology Demonstration and Promotion(Grant No.NJ2022-03)National Natural Science Fund of China(Grant No.61473155)Six Talent Peaks Project in Jiangsu Province of China(Grant No.GDZB-039).
文摘To address the nonlinearities and external disturbances in unstructured and complex agricultural environments,this paper investigates an autonomous trajectory tracking control method for agricultural ground vehicles.Firstly,this paper presents the design and implementation of a lightweight,modular two-wheeled differential drive vehicle equipped with two drive wheels and two caster wheels.The vehicle comprises drive wheel modules,passive wheel modules,battery modules,a vehicle frame,a sensor system,and a control system.Secondly,a novel robust trajectory tracking method was proposed,utilizing an improved pure pursuit algorithm.Additionally,an Online Particle Swarm Optimization Continuously Tuned PID(OPSO-CTPID)controller was introduced to dynamically search for optimal control gains for the PID controller.Simulation results demonstrate the superiority of the improved pure pursuit algorithm and the OPSO-CTPID control strategy.To validate the performance,the vehicle was integrated with a seeding and fertilizing machine to realize autonomous wheat seeding in an agricultural environment.Experimental outcomes reveal that the vehicle of this study completed a seeding operation exceeding 1 km in distance.The proposed method can robustly and smoothly track the desired trajectory with an accuracy of less than 10 cm for the root mean square error(RMSE)of the curve and straight lines,given a suitable set of parameters,meeting the requirements of agricultural applications.The findings of this study hold significant reference value for subsequent research on trajectory tracking algorithms for ground-based agricultural robots.
基金Fujian Provincial Science and Technology Major Project(No.2020HZ02014)Education and Teaching Reform Research Project for Colleges and Universities in Fujian Province(No.FBJG20210239)Huaqiao University Graduate Education Teaching Reform Research Funding Project(No.20YJG009).
文摘This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references quickly. At first, nonsingular fast terminal slidingmode control is developed, which can guarantee not only the stability but also finite-timeconvergence of the closed-loop system. As the parameters of the designed controllers playa vital role for control performance, an improved beetle antennae search algorithm is proposedto optimise them. By employing the historical information of the beetle’s antennaeand dynamically updating the step size as well as the range of its searching, the optimisingis accelerated considerably to ensure the efficiency of the quadrotor control. The superiorityof the proposed control scheme is demonstrated by simulation experiments, from whichone can see that both the error and the overshooting of the trajectory tracking are reducedeffectively.