期刊文献+
共找到96,450篇文章
< 1 2 250 >
每页显示 20 50 100
Adaptive state-constrained/model-free iterative sliding mode control for aerial robot trajectory tracking
1
作者 Chen AN Jiaxi ZHOU Kai WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期603-618,共16页
This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sl... This paper develops a novel hierarchical control strategy for improving the trajectory tracking capability of aerial robots under parameter uncertainties.The hierarchical control strategy is composed of an adaptive sliding mode controller and a model-free iterative sliding mode controller(MFISMC).A position controller is designed based on adaptive sliding mode control(SMC)to safely drive the aerial robot and ensure fast state convergence under external disturbances.Additionally,the MFISMC acts as an attitude controller to estimate the unmodeled dynamics without detailed knowledge of aerial robots.Then,the adaption laws are derived with the Lyapunov theory to guarantee the asymptotic tracking of the system state.Finally,to demonstrate the performance and robustness of the proposed control strategy,numerical simulations are carried out,which are also compared with other conventional strategies,such as proportional-integralderivative(PID),backstepping(BS),and SMC.The simulation results indicate that the proposed hierarchical control strategy can fulfill zero steady-state error and achieve faster convergence compared with conventional strategies. 展开更多
关键词 aerial robot hierarchical control strategy model-free iterative sliding mode controller(MFISMC) trajectory tracking reinforcement learning
下载PDF
Adaptive Trajectory Tracking Control for Nonholonomic Wheeled Mobile Robots:A Barrier Function Sliding Mode Approach
2
作者 Yunjun Zheng Jinchuan Zheng +3 位作者 Ke Shao Han Zhao Hao Xie Hai Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第4期1007-1021,共15页
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base... The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances. 展开更多
关键词 Adaptive sliding mode barrier function nonholonomic wheeled mobile robot(NWMR) trajectory tracking control
下载PDF
Trajectory tracking guidance of interceptor via prescribed performance integral sliding mode with neural network disturbance observer 被引量:1
3
作者 Wenxue Chen Yudong Hu +1 位作者 Changsheng Gao Ruoming An 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期412-429,共18页
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system... This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots. 展开更多
关键词 BP network neural Integral sliding mode control(ISMC) Missile defense Prescribed performance function(PPF) State observer tracking guidance system
下载PDF
Adaptive Robust Control with Leakage-Type Control Law for Trajectory Tracking of Exoskeleton Robots
4
作者 Jin Tian Xiulai Wang +1 位作者 Ningling Ma Yutao Zhang 《Advances in Internet of Things》 2024年第3期53-66,共14页
This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accuratel... This paper investigates the trajectory following problem of exoskeleton robots with numerous constraints. However, as a typical nonlinear system with variability and parameter uncertainty, it is difficult to accurately achieve the trajectory tracking control for exoskeletons. In this paper, we present a robust control of trajectory tracking control based on servo constraints. Firstly, we consider the uncertainties (e.g., modelling errors, initial condition deviations, structural vibrations, and other unknown external disturbances) in the exoskeleton system, which are time-varying and bounded. Secondly, we establish the dynamic model and formulate a close-loop connection between the dynamic model and the real world. Then, the trajectory tracking issue is regarded as a servo constraint problem, and an adaptive robust control with leakage-type adaptive law is proposed with the guaranteed Lyapunov stability. Finally, we conduct numerical simulations to verify the performance of the proposed controller. 展开更多
关键词 trajectory tracking Adaptive Robust Control Exoskeleton Robots UNCERTAINTIES
下载PDF
Position Errors and Interference Prediction-Based Trajectory Tracking for Snake Robots 被引量:2
5
作者 Dongfang Li Yilong Zhang +5 位作者 Ping Li Rob Law Zhengrong Xiang Xin Xu Limin Zhu Edmond Q.Wu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1810-1821,共12页
This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined traj... This work presents a trajectory tracking control method for snake robots.This method eliminates the influence of time-varying interferences on the body and reduces the offset error of a robot with a predetermined trajectory.The optimized line-of-sight(LOS)guidance strategy drives the robot’s steering angle to maintain its anti-sideslip ability by predicting position errors and interferences.Then,the predictions of system parameters and viscous friction coefficients can compensate for the joint torque control input.The compensation is adopted to enhance the compatibility of a robot within ever-changing environments.Simulation and experimental outcomes show that our work can decrease the fluctuation peak of the tracking errors,reduce adjustment time,and improve accuracy. 展开更多
关键词 Anti-sideslip COMPENSATION snake robot trajectory tracking
下载PDF
Novel learning framework for optimal multi-object video trajectory tracking
6
作者 Siyuan CHEN Xiaowu HU +2 位作者 Wenying JIANG Wen ZHOU Xintao DING 《Virtual Reality & Intelligent Hardware》 EI 2023年第5期422-438,共17页
Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emerge... Background With the rapid development of Web3D, virtual reality, and digital twins, virtual trajectories and decision data considerably rely on the analysis and understanding of real video data, particularly in emergency evacuation scenarios. Correctly and effectively evacuating crowds in virtual emergency scenarios are becoming increasingly urgent. One good solution is to extract pedestrian trajectories from videos of emergency situations using a multi-target tracking algorithm and use them to define evacuation procedures. Methods To implement this solution, a trajectory extraction and optimization framework based on multi-target tracking is developed in this study. First, a multi-target tracking algorithm is used to extract and preprocess the trajectory data of the crowd in a video. Then, the trajectory is optimized by combining the trajectory point extraction algorithm and Savitzky-Golay smoothing filtering method. Finally, related experiments are conducted, and the results show that the proposed approach can effectively and accurately extract the trajectories of multiple target objects in real time. Results In addition, the proposed approach retains the real characteristics of the trajectories as much as possible while improving the trajectory smoothing index, which can provide data support for the analysis of pedestrian trajectory data and formulation of personnel evacuation schemes in emergency scenarios. Conclusions Further comparisons with methods used in related studies confirm the feasibility and superiority of the proposed framework. 展开更多
关键词 WEB3D Virtual evacuation Multi-object tracking trajectory extraction trajectory optimization
下载PDF
Prescribed Performance Tracking Control of Time-Delay Nonlinear Systems With Output Constraints 被引量:1
7
作者 Jin-Xi Zhang Kai-Di Xu Qing-Guo Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第7期1557-1565,共9页
The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requ... The problem of prescribed performance tracking control for unknown time-delay nonlinear systems subject to output constraints is dealt with in this paper. In contrast with related works, only the most fundamental requirements, i.e., boundedness and the local Lipschitz condition, are assumed for the allowable time delays. Moreover, we focus on the case where the reference is unknown beforehand, which renders the standard prescribed performance control designs under output constraints infeasible. To conquer these challenges, a novel robust prescribed performance control approach is put forward in this paper.Herein, a reverse tuning function is skillfully constructed and automatically generates a performance envelop for the tracking error. In addition, a unified performance analysis framework based on proof by contradiction and the barrier function is established to reveal the inherent robustness of the control system against the time delays. It turns out that the system output tracks the reference with a preassigned settling time and good accuracy,without constraint violations. A comparative simulation on a two-stage chemical reactor is carried out to illustrate the above theoretical findings. 展开更多
关键词 Nonlinear systems output constraints prescribed performance reference tracking time delays
下载PDF
Entropy of deterministic trajectory via trajectories ensemble
8
作者 彭勇刚 冉翠平 郑雨军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期347-354,共8页
We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory... We present a formulation of the single-trajectory entropy using the trajectories ensemble. The single-trajectory entropy is affected by its surrounding trajectories via the distribution function. The single-trajectory entropies are studied in two typical potentials, i.e., harmonic potential and double-well potential, and in viscous environment by interacting trajectory method. The results of the trajectory methods are in agreement well with the numerical methods(Monte Carlo simulation and difference equation). The single-trajectory entropies increasing(decreasing) could be caused by absorption(emission) heat from(to) the thermal environment. Also, some interesting trajectories, which correspond to the rare evens in the processes, are demonstrated. 展开更多
关键词 trajectory entropy trajectories ensemble
下载PDF
WiFi Indoor Positioning and Tracking Algorithm Based on Compressive Sensing and Sage-Husa Adaptive Kalman Filter
9
作者 Yingjie Sun Yi Zhong +2 位作者 Congwei Hu Ao Xiong Hu Zhao 《Open Journal of Applied Sciences》 2024年第2期379-390,共12页
Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking... Aiming at the problem that the positioning accuracy of WiFi indoor positioning technology based on location fingerprint has not reached the requirements of practical application, a WiFi indoor positioning and tracking algorithm combining adaptive affine propagation (AAPC), compressed sensing (CS) and Kalman filter is proposed. In the off-line phase, AAPC algorithm is used to generate clustering fingerprints with optimal clustering effect performance;In the online phase, CS and nearest neighbor algorithm are used for position estimation;Finally, the Kalman filter and physical constraints are combined to perform positioning and tracking. By collecting a large number of real experimental data, it is proved that the developed algorithm has higher positioning accuracy and more accurate trajectory tracking effect. 展开更多
关键词 WiFi Indoor Positioning CLUSTER Signal Recovery trajectory tracking
下载PDF
Privacy Protection in COVID Data Tracking: Textual Analysis of the Literature
10
作者 Antonella Massari Viviana D’Addosio +1 位作者 Vittoria Claudia De Nicolò Samuela L’Abbate 《Applied Mathematics》 2024年第3期235-255,共21页
The literary review presented in the following paper aims to analyze the tracking tools used in different countries during the period of the COVID-19 pandemic. Tracking apps that have been adopted in many countries to... The literary review presented in the following paper aims to analyze the tracking tools used in different countries during the period of the COVID-19 pandemic. Tracking apps that have been adopted in many countries to collect data in a homogeneous and immediate way have made up for the difficulty of collecting data and standardizing evaluation criteria. However, the regulation on the protection of personal data in the health sector and the adoption of the new General Data Protection Regulation in European countries has placed a strong limitation on their use. This has not been the case in non-European countries, where monitoring methodologies have become widespread. The textual analysis presented is based on co-occurrence and multiple correspondence analysis to show the contact tracing methods adopted in different countries in the pandemic period by relating them to the issue of privacy. It also analyzed the possibility of applying Blockchain technology in applications for tracking contagions from COVID-19 and managing health data to provide a high level of security and transparency, including through anonymization, thus increasing user trust in using the apps. 展开更多
关键词 tracking PRIVACY Blockchain Textual Analysis
下载PDF
FPGA and computer-vision-based atom tracking technology for scanning probe microscopy
11
作者 俞风度 刘利 +5 位作者 王肃珂 张新彪 雷乐 黄远志 马瑞松 郇庆 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期76-85,共10页
Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board f... Atom tracking technology enhanced with innovative algorithms has been implemented in this study,utilizing a comprehensive suite of controllers and software independently developed domestically.Leveraging an on-board field-programmable gate array(FPGA)with a core frequency of 100 MHz,our system facilitates reading and writing operations across 16 channels,performing discrete incremental proportional-integral-derivative(PID)calculations within 3.4 microseconds.Building upon this foundation,gradient and extremum algorithms are further integrated,incorporating circular and spiral scanning modes with a horizontal movement accuracy of 0.38 pm.This integration enhances the real-time performance and significantly increases the accuracy of atom tracking.Atom tracking achieves an equivalent precision of at least 142 pm on a highly oriented pyrolytic graphite(HOPG)surface under room temperature atmospheric conditions.Through applying computer vision and image processing algorithms,atom tracking can be used when scanning a large area.The techniques primarily consist of two algorithms:the region of interest(ROI)-based feature matching algorithm,which achieves 97.92%accuracy,and the feature description-based matching algorithm,with an impressive 99.99%accuracy.Both implementation approaches have been tested for scanner drift measurements,and these technologies are scalable and applicable in various domains of scanning probe microscopy with broad application prospects in the field of nanoengineering. 展开更多
关键词 atom tracking FPGA computer vision drift measurement
下载PDF
Joint Optimization of Resource Allocation and Trajectory Based on User Trajectory for UAV-Assisted Backscatter Communication System
12
作者 Peizhong Xie Junjie Jiang +1 位作者 Ting Li Yin Lu 《China Communications》 SCIE CSCD 2024年第2期197-209,共13页
The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backsca... The Backscatter communication has gained widespread attention from academia and industry in recent years. In this paper, A method of resource allocation and trajectory optimization is proposed for UAV-assisted backscatter communication based on user trajectory. This paper will establish an optimization problem of jointly optimizing the UAV trajectories, UAV transmission power and BD scheduling based on the large-scale channel state signals estimated in advance of the known user trajectories, taking into account the constraints of BD data and working energy consumption, to maximize the energy efficiency of the system. The problem is a non-convex optimization problem in fractional form, and there is nonlinear coupling between optimization variables.An iterative algorithm is proposed based on Dinkelbach algorithm, block coordinate descent method and continuous convex optimization technology. First, the objective function is converted into a non-fractional programming problem based on Dinkelbach method,and then the block coordinate descent method is used to decompose the original complex problem into three independent sub-problems. Finally, the successive convex approximation method is used to solve the trajectory optimization sub-problem. The simulation results show that the proposed scheme and algorithm have obvious energy efficiency gains compared with the comparison scheme. 展开更多
关键词 energy efficiency joint optimization UAV-assisted backscatter communication user trajectory
下载PDF
Beam Training and Tracking in mmWave Communication:A Survey
13
作者 Wang Yi Wei Zhiqing Feng Zhiyong 《China Communications》 SCIE CSCD 2024年第6期1-22,共22页
Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short tr... Communicating on millimeter wave(mmWave)bands is ushering in a new epoch of mobile communication which provides the availability of 10 Gbps high data rate transmission.However,mmWave links are easily prone to short transmission range communication because of the serious free space path loss and the blockage by obstacles.To overcome these challenges,highly directional beams are exploited to achieve robust links by hybrid beamforming.Accurately aligning the transmitter and receiver beams,i.e.beam training,is vitally important to high data rate transmission.However,it may cause huge overhead which has negative effects on initial access,handover,and tracking.Besides,the mobility patterns of users are complicated and dynamic,which may cause tracking error and large tracking latency.An efficient beam tracking method has a positive effect on sustaining robust links.This article provides an overview of the beam training and tracking technologies on mmWave bands and reveals the insights for future research in the 6th Generation(6G)mobile network.Especially,some open research problems are proposed to realize fast,accurate,and robust beam training and tracking.We hope that this survey provides guidelines for the researchers in the area of mmWave communications. 展开更多
关键词 6G beam tracking beam training BEAMFORMING mmWave
下载PDF
Automatic velocity picking based on optimal key points tracking algorithm
14
作者 Yong-Hao Wang Wen-Kai Lu +3 位作者 Song-Bai Jin Yang Li Yu-Xuan Li Xiao-Feng Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期903-917,共15页
Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating... Picking velocities from semblances manually is laborious and necessitates experience. Although various methods for automatic velocity picking have been developed, there remains a challenge in efficiently incorporating information from nearby gathers to ensure picked velocity aligns with seismic horizons while also improving picking accuracy. The conventional method of velocity picking from a semblance volume is computationally demanding, highlighting a need for a more efficient strategy. In this study, we introduce a novel method for automatic velocity picking based on multi-object tracking. This dynamic tracking process across different semblance panels can integrate information from nearby gathers effectively while maintaining computational efficiency. First, we employ accelerated density clustering on the velocity spectrum to discern cluster centers without the requirement for prior knowledge regarding the number of clusters. These cluster centers embody the maximum likelihood velocities of the main subsurface structures. Second, our proposed method tracks key points within the semblance volume. Kalman filter is adopted to adjust the tracking process, followed by interpolation on these tracked points to construct the final velocity model. Our synthetic data example demonstrates that our proposed algorithm can effectively rectify the picking errors of the clustering algorithm. We further compare the performances of the clustering method(CM), the proposed tracking method(TM), and the variational method(VM) on a field dataset from the Gulf of Mexico. The results attest that our method offers superior accuracy than CM, achieves comparable accuracy with VM, and benefits from a reduced computational cost. 展开更多
关键词 Velocity picking Multi-object tracking Density clustering Kalman filter
下载PDF
A Retrodirective Array Enabled by CMOS Chips for Two-Way Wireless Communication with Automatic Beam Tracking
15
作者 Jiacheng Guo Yizhu Shen +2 位作者 Guoqing Dong Zhuang Han Sanming Hu 《Engineering》 SCIE EI CAS CSCD 2024年第6期196-207,共12页
This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic comple... This article proposes and demonstrates a retrodirective array(RDA)for two-way wireless communication with automatic beam tracking.The proposed RDA is enabled by specifically designed chips made using a domestic complementary metal-oxide semiconductor(CMOS)process.The highly integrated CMOS chip includes a receiving(Rx)chain,a transmitting(Tx)chain,and a unique tracking phaselocked loop(PLL)for the crucial conjugated phase recovery in the RDA.This article also proposes a method to reduce the beam pointing error(BPE)in a conventional RDA.To validate the above ideas simply yet without loss of generality,a 2.4 GHz RDA is demonstrated through two-way communication links between the Rx and Tx chains,and an on-chip quadrature coupler is designed to achieve a nonretrodirective signal suppression of 23 dBc.The experimental results demonstrate that the proposed RDA,which incorporates domestically manufactured low-cost 0.18 lm CMOS chips,is capable of automatically tracking beams covering±40with a reduced BPE.Each CMOS chip in the RDA has a compact size of 4.62 mm^(2) and a low power consumption of 0.15 W.To the best of the authors’knowledge,this is the first research to demonstrate an RDA with a fully customized CMOS chip for wireless communication with automatic beam tracking。 展开更多
关键词 Automatic beam tracking CMOS Retrodirective array Two-way communication
下载PDF
Trajectory planning for multi-robot coordinated towing system based on stability
16
作者 赵志刚 ZHAO Xiangtang +2 位作者 WEI Qizhe SU Cheng MENG Jiadong 《High Technology Letters》 EI CAS 2024年第1期43-51,共9页
Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to... Given the unconstrained characteristics of the multi-robot coordinated towing system,the rope can only provide a unidirectional constraint force to the suspended object,which leads to the weak ability of the system to resist external disturbances and makes it difficult to control the trajectory of the suspended object.Based on the kinematics and statics of the multi-robot coordinated towing system with fixed base,the dynamic model of the system is established by using the Newton-Euler equations and the Udwadia-Kalaba equations.To plan the trajectories with high stability and strong control,trajectory planning is performed by combining the dynamics and stability of the towing system.Based on the dynamic stability of the motion trajectory of the suspended object,the stability of the suspended object is effectively improved through online real-time planning and offline manual adjustment.The effectiveness of the proposed method is verified by comparing the motion stability of the suspended object before and after planning.The results provide a foundation for the motion planning and coordinated control of the towing system. 展开更多
关键词 towing system unconstrained system trajectory planning dynamic stability
下载PDF
SMSTracker:A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking
17
作者 Zhongyang Wang Hu Zhu Feng Liu 《Computers, Materials & Continua》 SCIE EI 2024年第7期605-623,共19页
Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have becom... Visual object tracking plays a crucial role in computer vision.In recent years,researchers have proposed various methods to achieve high-performance object tracking.Among these,methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information.However,current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information.In this paper,we introduce self-calibration multi-head self-attention Transformer(SMSTracker)as a solution to these challenges.It employs a hybrid tensor decomposition self-organizing multihead self-attention transformermechanism,which not only compresses and accelerates Transformer operations but also significantly reduces redundant data,thereby enhancing the accuracy and efficiency of tracking.Additionally,we introduce a self-calibration attention fusion block to resolve common issues of attention ambiguities and inconsistencies found in traditional trackingmethods,ensuring the stability and reliability of tracking performance across various scenarios.By integrating a hybrid tensor decomposition approach with a self-organizingmulti-head self-attentive transformer mechanism,SMSTracker enhances the efficiency and accuracy of the tracking process.Experimental results show that SMSTracker achieves competitive performance in visual object tracking,promising more robust and efficient tracking systems,demonstrating its potential to providemore robust and efficient tracking solutions in real-world applications. 展开更多
关键词 Visual object tracking tensor decomposition TRANSFORMER self-attention
下载PDF
General Optimal Trajectory Planning:Enabling Autonomous Vehicles with the Principle of Least Action
18
作者 Heye Huang Yicong Liu +4 位作者 Jinxin Liu Qisong Yang Jianqiang Wang David Abbink Arkady Zgonnikov 《Engineering》 SCIE EI CAS CSCD 2024年第2期63-76,共14页
This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we emplo... This study presents a general optimal trajectory planning(GOTP)framework for autonomous vehicles(AVs)that can effectively avoid obstacles and guide AVs to complete driving tasks safely and efficiently.Firstly,we employ the fifth-order Bezier curve to generate and smooth the reference path along the road centerline.Cartesian coordinates are then transformed to achieve the curvature continuity of the generated curve.Considering the road constraints and vehicle dynamics,limited polynomial candidate trajectories are generated and smoothed in a curvilinear coordinate system.Furthermore,in selecting the optimal trajectory,we develop a unified and auto-tune objective function based on the principle of least action by employing AVs to simulate drivers’behavior and summarizing their manipulation characteristics of“seeking benefits and avoiding losses.”Finally,by integrating the idea of receding-horizon optimization,the proposed framework is achieved by considering dynamic multi-performance objectives and selecting trajectories that satisfy feasibility,optimality,and adaptability.Extensive simulations and experiments are performed,and the results demonstrate the framework’s feasibility and effectiveness,which avoids both dynamic and static obstacles and applies to various scenarios with multi-source interactive traffic participants.Moreover,we prove that the proposed method can guarantee real-time planning and safety requirements compared to drivers’manipulation. 展开更多
关键词 Autonomous vehicle trajectory planning Multi-performance objectives Principle of least action
下载PDF
Research on Anthropomorphic Obstacle Avoidance Trajectory Planning for Adaptive Driving Scenarios Based on Inverse Reinforcement Learning Theory
19
作者 Jian Wu Yang Yan +1 位作者 Yulong Liu Yahui Liu 《Engineering》 SCIE EI CAS CSCD 2024年第2期133-145,共13页
The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajecto... The forward design of trajectory planning strategies requires preset trajectory optimization functions,resulting in poor adaptability of the strategy and an inability to accurately generate obstacle avoidance trajectories that conform to real driver behavior habits.In addition,owing to the strong time-varying dynamic characteristics of obstacle avoidance scenarios,it is necessary to design numerous trajectory optimization functions and adjust the corresponding parameters.Therefore,an anthropomorphic obstacle-avoidance trajectory planning strategy for adaptive driving scenarios is proposed.First,numerous expert-demonstrated trajectories are extracted from the HighD natural driving dataset.Subsequently,a trajectory expectation feature-matching algorithm is proposed that uses maximum entropy inverse reinforcement learning theory to learn the extracted expert-demonstrated trajectories and achieve automatic acquisition of the optimization function of the expert-demonstrated trajectory.Furthermore,a mapping model is constructed by combining the key driving scenario information that affects vehicle obstacle avoidance with the weight of the optimization function,and an anthropomorphic obstacle avoidance trajectory planning strategy for adaptive driving scenarios is proposed.Finally,the proposed strategy is verified based on real driving scenarios.The results show that the strategy can adjust the weight distribution of the trajectory optimization function in real time according to the“emergency degree”of obstacle avoidance and the state of the vehicle.Moreover,this strategy can generate anthropomorphic trajectories that are similar to expert-demonstrated trajectories,effectively improving the adaptability and acceptability of trajectories in driving scenarios. 展开更多
关键词 Obstacle avoidance trajectory planning Inverse reinforcement theory Anthropomorphic Adaptive driving scenarios
下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
20
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 Adaptive control Reinforcement learning Uncertain mechanical systems Asymptotic tracking
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部