The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement...The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement systems. The foundation of these measurements relies on high-quality confocal Raman spectroscopy of skin and the robust numerical analysis of water profiles, which allow for accurate determination of SC thickness. These measurements are useful for studying intrinsic skin hydration profiles at different body sites and for determining hydration properties of skin related to topically applied materials. While the use of high-quality in-vivo Raman instrumentation has become routine and its use for SC thickness measurement widely reported, there is lack of agreement as to the best method of computing SC thickness values from Raman water profiles. Several methods have been proposed and are currently in use for such computations, but none of these methods has been critically evaluated. The work reported in this paper describes a new method for the determination of stratum corneum thickness from in-vivo confocal Raman water profiles. The method represents a consensus approach to the problem, which was found necessary to apply in order to properly model and quantify the large diversity of water profile types encountered in typical in-vivo Raman water measurement. The methodology is evaluated for performance using three criteria: 1) frequency of minimum fitting error on modeling to a standard numerical function;2) frequency of minimum model error for consensus vs. individual SC thickness values;and 3) correlation with reflectance confocal microscopy (RCM) values for SC thickness. The correlation study shows this approach to be a reasonable replacement for the more tedious and time-consuming RCM method with R2 = 0.68 and RMS error = 3.7 microns over the three body sites tested (cheek, forearm and leg).展开更多
The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy...The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.展开更多
Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwri...Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.展开更多
Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defec...Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.展开更多
文摘The measurement of stratum corneum (SC) thickness from in-vivo Raman water concentration depth profiles is gaining in popularity and appeal due to the availability and ease of use of in-vivo confocal Raman measurement systems. The foundation of these measurements relies on high-quality confocal Raman spectroscopy of skin and the robust numerical analysis of water profiles, which allow for accurate determination of SC thickness. These measurements are useful for studying intrinsic skin hydration profiles at different body sites and for determining hydration properties of skin related to topically applied materials. While the use of high-quality in-vivo Raman instrumentation has become routine and its use for SC thickness measurement widely reported, there is lack of agreement as to the best method of computing SC thickness values from Raman water profiles. Several methods have been proposed and are currently in use for such computations, but none of these methods has been critically evaluated. The work reported in this paper describes a new method for the determination of stratum corneum thickness from in-vivo confocal Raman water profiles. The method represents a consensus approach to the problem, which was found necessary to apply in order to properly model and quantify the large diversity of water profile types encountered in typical in-vivo Raman water measurement. The methodology is evaluated for performance using three criteria: 1) frequency of minimum fitting error on modeling to a standard numerical function;2) frequency of minimum model error for consensus vs. individual SC thickness values;and 3) correlation with reflectance confocal microscopy (RCM) values for SC thickness. The correlation study shows this approach to be a reasonable replacement for the more tedious and time-consuming RCM method with R2 = 0.68 and RMS error = 3.7 microns over the three body sites tested (cheek, forearm and leg).
基金the Natural Science Foundation of Guangdong Province of China (Grant No. 05005926)the Plan Project of Science and Technology of Guangzhou City (Grant No. 2007J1-C0011)Open Foundation of the Key Laboratory of Laser Life Science,Ministry of Education of China(2007-05)
文摘The imaging theory of Raman induced Kerr effect spectroscopy (RIKES) in nonlinear confocal microscopy is presented in this paper. Three-dimensional point spread function (3D-PSF) of RIKES nonlinear confocal microscopy in isotropic media is derived with Fourier imaging theory and RIKES theory. The impact of nonlinear property of RIKES on the spatial resolution and imaging properties of confocal microscopy have been analyzed in detail. It is proved that RIKES nonlinear confocal microscopy can simultaneously provide more information than two-photon confocal microscopy concerning molecular vibration mode, vibration orientation and optically induced molecular reorientation, etc. It is shown that RIKES nonlinear confocal microscopy significantly enhances the spatial resolution and imaging quality of confocal microscopy and achieves much higher resolution than that of two-photon confocal microscopy.
基金This work was supported by the National Natural Science Foundation of China(No.51575389,51761135106)the National Key Research and Development Program of China(2016YFB1102203)+1 种基金the State Key Laboratory of Precision Measuring Technology and Instruments(Pilt1705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Silicon-vacancy(VSi)centers in silicon carbide(SiC)are expected to serve as solid qubits,which can be used in quantum computing and sensing.As a new controllable color center fabrication method,femtosecond(fs)laserwriting has been gradually applied in the preparation of VSi in SiC.In this study,4H-SiCwas directlywritten by an fs laser and characterized at 293 K by atomic force microscopy,confocal photoluminescence(PL),and Raman spectroscopy.PL signals of VSi were found and analyzed using 785 nm laser excitation by means of depth profiling and two-dimensional mapping.The influence of machining parameters on the VSi formation was analyzed,and the three-dimensional distribution of VSi defects in the fs laser writing of 4H-SiC was established.
基金the National Natural Science Foundation of China(Nos.51575389,51761135106)National Key Research and Development Program of China(2016YFB1102203)+1 种基金State key laboratory of precision measuring technology and instruments(Piltl705)the‘111’Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China(Grant No.B07014)。
文摘Color centers in silicon carbide(SiC)are promising candidates for quantum technologies.However,the richness of the polytype and defect configuration of SiC makes the accurate control of the types and position of defects in SiC still challenging.In this study,helium ion-implanted 4H-SiC was characterized by atomic force microscopy(AFM),confocal photoluminescence(PL),and confocal Raman spectroscopy at room temperature.PL signals of silicon vacancy were found and analyzed using 638-nm and 785-nm laser excitation by means of depth profiling and SWIFT mapping.Lattice defects(C-C bond)were detected by continuous laser excitation at 532 nm and 638 nm,respectively.PL/Raman depth profiling was helpful in revealing the three-dimensional distribution of produced defects.Differences in the depth profiling results and SRIM simulation results were explained by considering the depth resolution of the confocal measurement setup,helium bubbles,as well as swelling.